Skip to main content
Log in

Chemosensitivity of conjunctival melanoma cell lines to target-specific chemotherapeutic agents

  • Oncology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Objective

In conjunctival melanoma, local chemotherapy has been based so far on clinical evidence and limited to the therapy of melanoma in situ. Our aim was to define substances that may have the potential to add to therapeutic options in extended local growth and metastatic disease. Two conjunctival cell lines (CRMM-1 and CRMM-2) have been established from recurrent conjunctival melanoma. In this study, we examined the chemosensitivity of these cell lines to different cytotoxic substances.

Materials and methods

The cell lines CRMM-1 and CRMM-2 were exposed to chemotherapeutics for 24 h and the IC50 was generated. Sulforhodamin-B assays were used for quantification of in vitro efficacy. Time of exposure and escalating concentrations of the substances were adapted to the experimental setting.

Results

Bortezomib, clusianone 502 (nemorosone), ranpirnase, and sorafenib were efficient in inhibiting the growth of conjunctival melanoma cell lines. The IC50 achieved concentrations below or around 10 μM for these substances.

Conclusions

Bortezomib, clusianone 502, ranpirnase, and sorafenib inhibited growth in conjunctival melanoma cell lines efficiently. The new substances may be a suitable alternative for local therapy. New therapeutic options with highly specific targeted agents for metastatic disease have to be evaluated in further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Demirci H, McCormick S, Finger P (2000) Topical mitomycin chemotherapy for conjunctival malignant melanoma and primary acquired melanosis with atypia: clinical experience with histopathologic observations. Arch Ophthalmol 118(7):885–891

    PubMed  CAS  Google Scholar 

  2. Finger P, Czechonska G, Liarikos S (1998) Topical mitomycin C chemotherapy for conjunctival melanoma and PAM with atypia. Br J Ophthalmol 82:476–479

    Article  PubMed  CAS  Google Scholar 

  3. Kurli M, Finger P (2005) Topical mitomycin chemotherapy for conjunctival malignant melanoma and primary acquired melanosis with atypia: 12 years’ experience. Graefes Arch Clin Exp Ophthalmol 243(11):1108–1114

    Article  PubMed  CAS  Google Scholar 

  4. Folberg R, Mc Lean IW, Zimmermann LE (1985) Malignant melanoma of the conjunctiva. Hum Pathol 16:136–143

    Article  PubMed  CAS  Google Scholar 

  5. Seregard S, Kock E (1992) Conjunctival malignant melanoma in Sweden 1969–1991. Acta Ophthalmol Scand 70:289–296

    CAS  Google Scholar 

  6. Nareyeck G, Wuestemeyer H, von der Haar D, Anastassiou G (2005) Establishment of two cell lines derived from conjunctival melanomas. Exp Eye Res 81:361–362

    Article  PubMed  CAS  Google Scholar 

  7. Westekemper H, Freistuehler M, Anastassiou G, Nareyeck G, Bornfeld N, Steuhl K, Scheulen M, Hilger R (2012) Chemosensitivity of conjunctival melanoma cell lines to single chemotherapeutic agents and combinations. Br J Ophthalmol 96(4):591–596

    Article  PubMed  Google Scholar 

  8. Adams J, Palombella V, Sausville E, Johnson J, Destree A, Lazarus D, Maas J, Pien C, Prakash S, Elliott P (1999) Proteasome Inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    PubMed  CAS  Google Scholar 

  9. Ludwig H, Khayat D, Giaccone G, Facon T (2005) Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 104:1794–1807

    Article  PubMed  CAS  Google Scholar 

  10. Montagut C, Rovira A, Albanell J (2006) The proteasome: a novel target for anticancer therapy. Clin Transl Oncol 8(5):313–317

    Article  PubMed  CAS  Google Scholar 

  11. Simons S, Scheulen M, Jaehde U (2006) Bortezomib. Dtsch Med Wochenschr 131(5):214–218

    Article  PubMed  CAS  Google Scholar 

  12. Diaz-Carballo D, Seeber S, Strumberg D, Hilger RA (2003) Novel antitumoral compound isolated from Clusia rosea. Int J Clin Pharmacol Ther 41(12):622–623

    PubMed  CAS  Google Scholar 

  13. Diaz-Carballo D, Malak S, Freistuhler M, Elmaagacli A, Bardenheuer W, Reusch HP (2008) Nemorosone blocks proliferation and induces apoptosis in leukemia cells. Int J Clin Pharmacol Ther 46(8):428–439

    PubMed  CAS  Google Scholar 

  14. Holtrup F, Bauer A, Fellenberg K, Hilger RA, Wink M, Hoheisel JD (2011) Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br J Pharmacol 162(5):1045–1059

    Article  PubMed  CAS  Google Scholar 

  15. Lee I (2008) Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther 8(6):813–827

    Article  PubMed  CAS  Google Scholar 

  16. Haigis M, Kurten E, Raines R (2003) Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res 31(3):1024–1032

    Article  PubMed  CAS  Google Scholar 

  17. Wilhelm S, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post L, Bollag G, Trail P (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  18. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm S, Santoro M (2006) BAY 43–9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98(5):326–334

    Article  PubMed  CAS  Google Scholar 

  19. Westekemper H, Freistuehler M, Anastassiou G, Nareyeck G, Zeschnigk M, Bornfeld N, Steuhl K, Scheulen M, Hilger R (2011) Chemosensitivity of conjunctival melanoma cell lines to chemotherapeutic agents. Int J Clin Pharmacol Ther 48(1):78–80

    Google Scholar 

  20. Tschentscher F, Prescher G, Zeschnigk M, Horsthemke B, Lohmann DR (2000) Identification of chromosomes 3, 6, and 8 aberrations in uveal melanoma by microsatellite analysis in comparison to comparative genomic hybridization. Cancer Genet Cytogenet 122(1):13–17

    Article  PubMed  CAS  Google Scholar 

  21. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren J, Bokesch H, Kenney S, Boyd M (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  PubMed  CAS  Google Scholar 

  22. Wang W, Abbruzzese J, Evans D, Larry L, Cleary K, Chiao P (1999) The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5:119–127

    PubMed  CAS  Google Scholar 

  23. Duffey D, Chen Z, Dong G, Ondrey F, Nejad-Sattari M, Dong G, Van Waes C (1999) Expression of a dominant-negative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 59:3468–3474

    PubMed  CAS  Google Scholar 

  24. Shattuck-Brandt R, Richmond A (1997) Enhanced degradation of I-kappaB alpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells. Cancer Res 57:3032–3039

    PubMed  CAS  Google Scholar 

  25. Dhawan P, Richmond A (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277:7920–7928

    Article  PubMed  CAS  Google Scholar 

  26. Yang J, Richmond A (2001) Constitutive kappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 61:4901–4909

    PubMed  CAS  Google Scholar 

  27. Nyormoi O, Bar-Eli M (2003) Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metastasis 20:251–263

    Article  PubMed  CAS  Google Scholar 

  28. Ivanov V, Bhoumik A, Ronai Z (2003) Death receptors and melanoma resistance to apoptosis. Oncogene 22:3152–3161

    Article  PubMed  CAS  Google Scholar 

  29. Amiri K, Horton L, LaFleur B, Sosman J, Richmond A (2004) Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res 64:4912–4918

    Article  PubMed  CAS  Google Scholar 

  30. Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R (2006) Contribution of structural peculiarities of onconase to its high stability and folding kinetics. Biochemistry 45:3580–3587

    Article  PubMed  CAS  Google Scholar 

  31. Leland P, Schultz L, Kim B, Raines R (1998) Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci U S A 95:10407–10412

    Article  PubMed  CAS  Google Scholar 

  32. Arnold U, Ulbrich-Hofmann R (2006) Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett 28:1615–1622

    Article  PubMed  CAS  Google Scholar 

  33. Benito A, Ribo M, Vilanova M (2005) On the track of antitumour ribonucleases. Mol Biosyst 1:294–302

    Article  PubMed  CAS  Google Scholar 

  34. Pavlakis N, Vogelzang N (2006) Ranpirnase—an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther 6:391–399

    Article  PubMed  CAS  Google Scholar 

  35. Egberts F, Kahler K, Livingstone E, Hauschild A (2008) Metastatic melanoma: scientific rationale for sorafenib treatment and clinical results. Onkologie 31(7):398–403

    Article  PubMed  CAS  Google Scholar 

  36. McDermott D, Sosman J, Gonzalez R, Hodi F, Linette G, Richards J, Jakub J, Beeram M, Tarantolo S, Agarwala S, Frenette G, Puzanov I, Cranmer L, Lewis K, Kirkwood J, White J, Xia H, Patel K, Hersh E (2008) Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J Clin Oncol 1(26):2178–2185

    Article  Google Scholar 

  37. Panka DJ, Wang W, Atkins MB, Mier JW (2006) The Raf inhibitor BAY 43–9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 66(3):1611–1619

    Article  PubMed  CAS  Google Scholar 

  38. Fecher L, Amaravadi R, Flaherty K (2008) The MAPK pathway in melanoma. Curr Opin Oncol 20(2):183–189

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mariam Scharifi for her excellent help in performing the experiments and producing the results. We thank Dr. Michael Zeschnigk and Lars Masshöfer (Institute for Humangenetics, University of Duisburg-Essen) for the identification of the cell lines with MSA. The study was funded by the Dr.-Werner-Jackstädt-Stiftung, Wuppertal, Germany, and the Deutsche Ophthalmologische Gesellschaft (DOG).

The results were presented at the DOG-Annual Meeting in Berlin 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf A. Hilger.

Additional information

The study was supported by the Dr.-Werner-Jackstädt-Stiftung, Wuppertal, Germany, and the Deutsche Ophthalmologische Gesellschaft (DOG).

The authors have no financial interests to declare. The authors have full control of all primary data and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review the data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westekemper, H., Freistuehler, M., Bornfeld, N. et al. Chemosensitivity of conjunctival melanoma cell lines to target-specific chemotherapeutic agents. Graefes Arch Clin Exp Ophthalmol 251, 279–284 (2013). https://doi.org/10.1007/s00417-012-2083-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2083-8

Keywords

Navigation