Skip to main content

Advertisement

Log in

Evaluation of the in vitro activity of commercially available moxifloxacin and voriconazole eye-drops against clinical strains of Acanthamoeba

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Acanthamoeba is an opportunistic pathogen which is the causal agent of a sight-threatening ulceration of the cornea known as “Acanthamoeba keratitis” (AK) and, more rarely, an infection of the central nervous system called “granulomatous amoebic encephalitis” (GAE). The symptoms of AK are non-specific, and so it can be misdiagnosed as a viral, bacterial, or fungal keratitis. Furthermore, current therapeutic measures against AK are arduous, and show limited efficacy against the cyst stage of Acanthamoeba. Moxifloxacin, a fourth generation fluoroquinolone, has been used with other drugs to treat GAE, but its efficacy as a treatment for AK is not known. Voriconazole has been used to treat AK; however, its cysticidal efficacy is not known. Both drugs are commercially available as eye-drops. The aim of this study was to evaluate the in-vitro activity of these eye-drops against Acanthamoeba compared to two reference drugs (chlorhexidine and amphotericin B) which are currently used to treat AK and GAE.

Methods

The sensitivity of two clinical and one type strain of Acanthamoeba to the commercial concentrations of the four drugs was evaluated with a colorimetric assay. Mature cysts were incubated with voriconazole to determine their sensitivity to this drug. The effects on cell proliferation and cell toxicity were determined using standard procedures with commercial kits.

Results

The four compounds were active against the Acanthamoeba strains in this study. Although it prevented encystation, moxifloxacin’s amoebicidal activity was low. Voriconazole activity was greater than that of the other drugs, even at a concentration lower than in commercial eye drops. It was effective against cysts and decreased cell proliferation, with low cellular cytotoxicity.

Conclusion

Voriconazole could be used against AK as a first-line treatment or in combination. Moxifloxacin is an interesting adjuvant to consider as it is effectively prevents encystation of the amoeba which often complicates infection resolution. In addition, moxifloxacin is effective in preventing secondary bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stothard DR, Hay J, Schroeder-Diedrich JM, Seal DV, Byers TJ (1999) Fluorescent oligonucleotide probes for clinical and environmental detection of Acanthamoeba and the T4 18S rRNA gene sequence type. J Clin Microbiol 37:2687–2693

    PubMed  CAS  Google Scholar 

  2. Stothard DR, Schroede-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodríguez-Zaragoza S, Dean DL, Fuerst PA, Byers TJ (1998) The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. J Eukaryot Microbiol 45:45–54

    Article  PubMed  CAS  Google Scholar 

  3. Horn M, Fritsche TR, Gautom RK, Schleifer K, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba sp. related to the Paramecium caudatum symbiont Caedibacter caryphilus. Environ Microbiol 1:357–367

    Article  PubMed  CAS  Google Scholar 

  4. Gast RJ (2001) Development of an Acanthamoeba-specific reverse dot-blot and the discovery of a new ribotype. J Eukaryot Microbiol 48:609–615

    Article  PubMed  CAS  Google Scholar 

  5. Hewett MK, Robinson BS, Monis PT, Saint CP (2003) Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi. Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozool 42:325–329

    CAS  Google Scholar 

  6. Corsaro D, Venditti D (2010) Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol Res 107:233–238

    Article  PubMed  Google Scholar 

  7. Nuprasert W, Putaporntip C, Pariyakanok L, Jongwutiwes S (2010) Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. J Clin Microbiol 48:4636–4640

    Article  PubMed  Google Scholar 

  8. Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595

    Article  PubMed  Google Scholar 

  9. Panjwani N (2010) Pathogenesis of Acanthamoeba keratitis. Ocul Surf 8:70–79

    Article  PubMed  Google Scholar 

  10. Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6

    Article  PubMed  Google Scholar 

  11. Larkin DFP, Kilvington S, Easty DL (1990) Contamination of contact lens storage cases by Acanthamoeba and bacteria. Br J Ophthalmol 74:133–135

    Article  PubMed  CAS  Google Scholar 

  12. Devonshire FA, Munro CA, Clarke BJ (1993) Microbial contamination of contact lens cases in the west of Scotland. Br J Ophthalmol 77:41–45

    Article  PubMed  CAS  Google Scholar 

  13. Stevenson RWW, Seal DV (1998) Has the introduction of multipurpose solutions contributed to a reduced incidence of Acanthamoeba keratitis in contact lens wearers? A review. Cont Lens Anterior Eye 2189–2192

  14. Martín-Navarro CM, Lorenzo-Morales J, Cabrera-Serra MG, Rancel F, Coronado-Alvarez NM, Piñero JE, Valladares B (2008) The potential pathogenicity of chlorhexidine-sensitive Acanthamoeba strains isolated from contact lens cases from asymptomatic individuals in Tenerife, Canary Islands, Spain. J Med Microbiol 57:1399–1404

    Article  PubMed  Google Scholar 

  15. Brandt FH, Ware DA, Visvesvara GS (1989) Viability of Acanthamoeba cysts in ophthalmic solutions. Environ Microbiol 55:1144–1146

    CAS  Google Scholar 

  16. Elder MJ, Kilvington S, Dart JKG (1994) A clinicopathological study of in vitro sensitivity testing and Acanthamoeba keratitis. Invest Ophthalmol Vis Sci 35:1059–1064

    PubMed  CAS  Google Scholar 

  17. Aksozek A, McClellan K, Howard K, Niederkorn JY, Alizadeh H (2002) Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. J Parasitol 88:621–623

    PubMed  CAS  Google Scholar 

  18. Turner NA, Russell AD, Furr JR, Lloyd D (2004) Resistance, biguanide sorption and biguanide-induced pentose leakage during encystment of Acanthamoeba castellanii. J Appl Microbiol 96:1287–1295

    Article  PubMed  CAS  Google Scholar 

  19. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027

    Article  PubMed  Google Scholar 

  20. Larkin DFP, Kilvington S, Dart JKG (1992) Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology 99:185–191

    PubMed  CAS  Google Scholar 

  21. Lee JE, Oum BS, Choi HY (2007) Cysticidal effect on Acanthamoeba and toxicity on human keratocytes by polyhexamethylene biguanide and chlorhexidine. Cornea 26:736–741

    Article  PubMed  Google Scholar 

  22. Dart JKG, Saw VPJ, Kilvington S (2009) Acanthamoeba keratitis: diagnosis and treatment update 2009. Am J Ophthalmol 148:487–499

    Article  PubMed  Google Scholar 

  23. Pérez-Santonja JJ, Kilvington S, Hughes R, Tufail A, Matheson M, Dart JK (2003) Persistently culture positive Acanthamoeba keratitis: in vivo resistance and in vitro sensitivity. Ophthalmology 110:1593–600

    Article  PubMed  Google Scholar 

  24. Lackner P, Beer R, Broessner G, Helbok R, Pfausler B, Brenneis C, Auer H, Walochnik J, Schmutzhard E (2010) Acute granulomatous Acanthamoeba encephalitis in an immunocompetent patient. Neurocrit Care 12:91–94

    Article  PubMed  Google Scholar 

  25. Bang S, Edell E, Eghrari AO, Gottsch JD (2010) Treatment with voriconazole in 3 eyes with resistant Acanthamoeba keratitis. Am J Ophthalmol 149:66–69

    Article  PubMed  CAS  Google Scholar 

  26. Tu EY, Joslin CE, Shoff ME (2010) Successful treatment of chronic stromal Acanthamoeba keratitis with oral voriconazole monotherapy. Cornea 29:1066–1068

    Article  PubMed  Google Scholar 

  27. Martín-Navarro CM, Lorenzo-Morales J, Machín RP, López-Arencibia A, Valladares B, Piñero JE (2010) Acanthamoeba spp.: in vitro effects of clinical isolates on murine macrophages, osteosarcoma and HeLa cells. Exp Parasitol 126:85–88

    Article  PubMed  Google Scholar 

  28. McBride J, Ingram PR, Henriquez FL (2005) Development of colorimetric microtiter plate assay for assessment of antimicrobials against Acanthamoeba. J Clin Microbiol 43:629–634

    Article  PubMed  CAS  Google Scholar 

  29. Martín-Navarro CM, Lorenzo-Morales J, López-Arencibia A, Valladares B, Piñero JE (2010) Acanthamoeba spp.: efficacy of Bioclen FR One Step, a povidone–iodine based system for the disinfection of contact lenses. Exp Parasitol 126:109–112

    Article  PubMed  Google Scholar 

  30. Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E, De Pablos LM, Profotova B, Nohynkova E, Osuna A, Valladares B (2008) Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryot Cell 7:509–517

    Article  PubMed  CAS  Google Scholar 

  31. Lorenzo-Morales J, Martín-Navarro CM, López-Arencibia A, Santana-Morales MA, Afonso-Lehmann RN, Maciver SK, Valladares B, Martínez-Carretero E (2010) Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrob Agents Chemother 54:5151–5155

    Article  PubMed  CAS  Google Scholar 

  32. Khan NA (2003) Pathogenesis of Acanthamoeba infections. Microb Pathog 34:277–285

    Article  PubMed  Google Scholar 

  33. Ferrari G, Matuska S, Rama P (2011) Double-biguanide therapy for resistant Acanthamoeba keratitis. Case Report Ophthalmol 2:338–342

    Article  Google Scholar 

  34. Walia R, Montoya JG, Visvesvera GS, Booton GC, Doyle RL (2007) A case of successful treatment of cutaneous Acanthamoeba infection in a lung transplant recipient. Transpl Infect Dis 9:51–54

    Article  PubMed  CAS  Google Scholar 

  35. Anquetin G, Rouquayrol M, Mahmoudi N, Santillana-Hayat M, Gozalbes R, Greiner J, Farhati K, Derouin F, Guedj R, Vierling P (2004) Synthesis of new fluoroquinolones and evaluation of their in vitro activity on Toxoplasma gondii and Plasmodium spp. Bioorg Med Chem Lett 14:2773–2776

    Article  PubMed  CAS  Google Scholar 

  36. Fukuda M, Shibata N, Osada H, Yamashiro Y, Sasaki H (2011) Vitreous and aqueous penetration of orally and topically administered moxifloxacin. Ophthalmic Res 46:113–117

    PubMed  CAS  Google Scholar 

  37. Smith FR, Korn ED (1968) 7-Dehydrostigmasterol and ergosterol: the major sterol of an amoebae. J Lipid Res 9:405–408

    PubMed  CAS  Google Scholar 

  38. Mehdi H, Garg HS, Garg NK, Bhakuni DS (1988) Sterols of Acanthamoeba culbertsoni strain A-1. Steroids 5:551–558

    Article  Google Scholar 

  39. Schuster FL, Guglielmo BJ, Visvesvara GS (2006) In vitro activity of miltefosine and voriconazole on clinical isolates of free-living amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. J Eukaryot Microbiol 53:121–126

    Article  PubMed  CAS  Google Scholar 

  40. Banich AM, Bu P, Jacob G, Fox I, Zhang X, Perlman JI, Bouchard C (2003) Penetration of chlorhexidine into the rabbit anterior chamber following topical administration. Invest Ophthalmol Vis Sci 44:U317–U317. Meeting Abstract: 3769

    Google Scholar 

  41. Vorwerk CK, Streit F, Binder L, Tuchen S, Knop C, Behrens-Baumann W (2008) Aqueous humor concentration of voriconazole after topical administration in rabbits. Graefes Arch Clin Exp Ophthalmol 246:1179–1183

    Article  PubMed  CAS  Google Scholar 

  42. Vemulakonda GA, Hariprasad SM, Mieler WF, Prince RA, Shah GK, Van Gelder RN (2008) Aqueous and vitreous concentrations following topical administration of 1 % voriconazole in humans. Arch Ophthalmol 126:18–22

    Article  PubMed  CAS  Google Scholar 

  43. Tschopp M, Stary J, Frueh BE, Thormann W, De Smet J, VanBocxlaer J, Tappeiner C (2012) Impact of corneal cross-linking on drug penetration in an ex vivo porcine eye model. Cornea 31:222–226

    PubMed  Google Scholar 

  44. Charvalos E, Tzatzarakis MN, Van Bambeke F, Tulkens PM, Tsatsakis AM, Tzanakakis GN, Mingeot-Leclercq MP (2006) Water-soluble amphotericin B: polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects. J Antimicrob Chemother 57:236–244

    Article  PubMed  CAS  Google Scholar 

  45. Rajabalian S, Mohammadi M, Mozaffari B (2009) Cytotoxicity evaluation of Persica mouthwash on cultured human and mouse cell lines in the presence and absence of fetal calf serum. Indian J Dent Res 20:169–173

    Article  PubMed  Google Scholar 

  46. Larkin DF, Berry M, Easty DL (1991) In vitro corneal pathogenicity of Acanthamoeba. Eye 5:560–568

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. Sutherland K. Maciver for his critical editing and revision of the manuscript.

Financial support

This work was supported by the grants RICET (project no. RD06/0021/0005 of the programme of Redes Temáticas de Investigación Cooperativa, FIS), Spanish Ministry of Health, Madrid, Spain and the Project FIS PI10/01298 “Protozoosis emergentes por amebas de vida libre:aislamiento y caracterización molecular, identificación de cepas transportadoras de otros agentes patógenos y búsqueda de quimioterapias efectivas” from the Instituto de Salud Carlos III.

CMMN was supported by a postdoctoral grant from the Fundación Canaria Manuel Morales, La Palma, Canary Islands. JLM was supported by the Ramón y Cajal Subprogramme from the Spanish Ministry of Economy and Competivity RYC-2011-08863. ALA was funded by a grant “Ayudas del Programa de Formación de Personal Investigador, para la realización de Tesis Doctorales” from the Agencia Canaria de Investigación, Innovación y Sociedad de la Información from the Canary Islands Government.

This work was also supported by grants to F.A-M from Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo (PI021056), and Fundación Mutua Madrileña, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Martín-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Navarro, C.M., López-Arencibia, A., Arnalich-Montiel, F. et al. Evaluation of the in vitro activity of commercially available moxifloxacin and voriconazole eye-drops against clinical strains of Acanthamoeba . Graefes Arch Clin Exp Ophthalmol 251, 2111–2117 (2013). https://doi.org/10.1007/s00417-013-2371-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2371-y

Keywords

Navigation