Skip to main content

Advertisement

Log in

Intraocular silicone implant to treat chronic ocular hypotony—preliminary feasibility data

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Ocular hypotony secondary to proliferative vitreoretinopathy-related retinal detachment, trauma or inflammation is difficult to treat. Besides endotamponades such as silicone oil, vitreous implants such as iris diaphragms or balloons have been developed to stabilize the eye and to prevent phthisis of the globe. Vitreous implants tested thus far exhibit a seam at the attachment site of the hemispheres, or micropores. This manuscript reports the development of a seamless silicone balloon implant without micropores, which can be filled with silicone oil and surface-modified to improve its biocompatibility. Developed for intraocular placement in the management of chronic hypotony and phthisis prevention, it may also be suitable for tamponading retinal detachments.

Methods

Silicone was used as the basic structure for the fabrication of a seamless balloon-shaped intraocular implant, which was coated by employing a six-arm star-shaped (sP) macromer of a copolymer of 80 % ethylene oxide (EO) and 20 % propylene oxide (PO) with conjugated functional terminal isocyanate groups, NCO-sP(EO-stat-PO), with and without heparin. Three variants of implants, which differ in their surfaces, were manufactured: uncoated silicone, NCO-sP (EO-stat-PO) coated silicone and heparin-NCO-sP (EO-stat-PO) coated silicone implants. To exert a tamponade effect, the implant was filled with silicone oil and its properties were studied.

Results

Seamless thin balloon implants made of silicone, which are considered biocompatible and intrinsically resistant to biological attacks in vivo, could be fabricated in different sizes. The silicone oil-filled implant can mimic the mechanism of buoyant force and high surface tension of silicone oil, which is the only long-term vitreous substitute currently available. The silicone oil-filled implant can also mimic the natural vitreous body by occupying the entire posterior segment.

Conclusions

The intraocular silicone implant as an alternative long-term treatment of chronic ocular hypotony might offer a new option for clinical ophthalmological practice. In vivo studies need to be performed to collect more data on the implant’s long-term mechanical and optical properties, as well as long-term biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jonas JB, Vossmerbaeumer U, Kamppeter BA (2004) Chronic prephthisical ocular hypotony treated by intravitreal triamcinolone acetonide. Acta Ophthalmol Scand 825:637

    Article  Google Scholar 

  2. De Smet MD, Gunning F, Feenstra R (2005) The surgical management of chronic hypotony due to uveitis. Eye 191:60–64

    Article  Google Scholar 

  3. Cadera W, Harding PW, Gonder JR, Hooper PL (1993) Management of severe hypotony with intravitreal injection of Healon. Can J Ophthalmol 28(5):236–237

    CAS  PubMed  Google Scholar 

  4. Arevalo JF, Garcia RA, Fernandez CF (2004) Anterior segment inflammation and hypotony after posterior segment surgery. Ophthalmol Clin N Am 17(4):527–537

    Article  Google Scholar 

  5. Kapur R, Birnbaum AD, Goldstein DA, Tessler HH, Shapiro MJ, Ulanski LJ, Blair MP (2010) Treating uveitis-associated hypotony with pars planavitrectomy and silicone oil injection. Retina 30(1):140–145

    Article  PubMed  PubMed Central  Google Scholar 

  6. Küçükerdönmez C, Beutel J, Bartz-Schmidt KU, Gelisken F (2009) Treatment of chronic ocular hypotony with intraocular application of sodium hyaluronate. Br J Ophthalmol 93(2):235–239

    Article  PubMed  Google Scholar 

  7. Morse LS, McCuen BW (1991) The use of silicone oil in uveitis and hypotony. Retina 11(4):399–404

    Article  CAS  PubMed  Google Scholar 

  8. O’Connell SR, Majji AB, Humayun MS, de Juan E Jr (2000) The surgical management of hypotony. Ophthalmology 107(2):318–323

    Article  PubMed  Google Scholar 

  9. Pivetti-Pezzi P, Da Dalt S, La Cava M, Pinca M, De Gregorio F, Virno M (2000) Ibopamine treatment in chronic hypotony secondary to long-lasting uveitis. Eur J Ophthalmol 10(4):332–334

    CAS  PubMed  Google Scholar 

  10. Singh K, Byrd S, Egbert PR, Budenz D (1998) Risk of hypotony after primary trabeculectomy with antifibrotic agents in a black West African population. J Glaucoma 7(2):82–85

    Article  CAS  PubMed  Google Scholar 

  11. Tosi GM, Schiff W, Barile G, Yoshida N, Chang S (2005) Management of severe hypotony with intravitreal injection of viseoeplastic. Am J Ophthalmol 140(5):952–954

    Article  PubMed  Google Scholar 

  12. Schramm C, Spitzer M, Henke-Fahle S, Steinmetz G, Januschowski K, Heiduschka P, Geis-Gerstorfer J, Biedermann T, Bartz-Schmidt K, Szurman P (2012) The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci 2(53(2)):613–621. doi:10.1167/iovs.11-7322

    Article  Google Scholar 

  13. Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M, Sugiyama M, Annaka M (2006) Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr Eye Res 31:599–606

    Article  CAS  PubMed  Google Scholar 

  14. Keller GK, Dahlke C, Kuckelkorn R, Schrage N (2003) Experience with the artificial iris diaphragm in hypotonous eyes. Ophthalmology 100(3):203–208

    Article  CAS  Google Scholar 

  15. Glynne GC, Freeman HM, Schepens CL (1970) Vitreous surgery. 3. Intraocular balloon: Instrument Report. Arch Ophthalmol 83:713–714

    Article  Google Scholar 

  16. Tolentino FI, Refojo MF, Liu HS, Schepens CL and Freeman HM (1978) Intravitreous silicone balloon: an experimental study. Ophtalmic Surg. 73–80

  17. Gand H, Paroussis P, Skorpik C (1986) An intraocular balloon for silicone oil implantation. Graefes Arch Exp Clin Ophthalmol 224:18–20

    Article  Google Scholar 

  18. Binder S (1986) Repair of retinl detachments with temporary balloon buckling. Retina 6:210–214

    Article  CAS  PubMed  Google Scholar 

  19. Kreissig I, Failer J, Lincoff H, Ferrari F (1989) Results of temporary balloon buckle in the treatment of 500 retinal detachments and a comparison with pneumatic retinopexy. Am J Ophthalmol 107:381–389

    Article  CAS  PubMed  Google Scholar 

  20. Peng YJ, Lu YT, Liu KS, Liu SJ, Fan L, Huang WC (2012) Biodegradable balloon-expandable self-locking polycaprolactone stents as buckling explants for the treatment of retinal detachment: an in vitro and in vivo study. J Biomed Mater Res A 101(1):167–175. doi:10.1002/jbm.a.34315, 2013 Jan

    PubMed  Google Scholar 

  21. Liu Y, Jiang Z, Gao Q, Ge J, Chen J, Cao X, Shen Q, Ma P (2010) Technical standards of a foldable capsular vitreous body in terms of mechanical, optical, and biocompatible properties. Artif Organs 34(10):836–845

    Article  PubMed  Google Scholar 

  22. Lin X, Wang Z, Jiang Z, Long C, Liu Y, Wang P, Jin C, Yi C, Gao Q (2012) Preliminary efficacy and safety of a silicone oil-filled foldable capsular vitreous body in the treatment of severe retinal detachment. Retina 32(4):729–741

    Article  PubMed  Google Scholar 

  23. Qian-Ying G, Yue F, Yan-Nian H (2015) Vitreous substitutes: challenges and directions. Int J Ophthalmol 18(8 (3)):437–440

    Google Scholar 

  24. Barr S, Hill E, Bayat A (2009) Current implant surface technology: an examination of their nanostructure and their influence on fibroblast alignment and biocompatibility. Eplasty 9:e22

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fischer S, Carstesen D, Klee D, Walter P, Weinberger AW (2012) Surface-modified siliconefoils for intraocular implantation. Graefes Arch Clin Exp Ophthalmol 250(6):823–827

    Article  CAS  PubMed  Google Scholar 

  26. Groll J, Ameringer T, Spatz JP, Moeller M (2005) Ultrahin coatings form isocyanate- terminated star PEG prepolymers: Layer formation and characterization. Langmuir 1(21(5)):1991–1999

    Article  Google Scholar 

  27. Gates DP (2009) Inorganic and organometallic polymers. Annual Rep ProgChem Sec A 105397–415

  28. Jones RG, Andos W, Chojnowski J (eds) (2000) Silicone-containing polymers: The science and technology of their synthesis and applications. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  29. Colas A, Curtis J (2002) Silicone biomaterials: History and chemistry in biomaterials science: An introduction to materials in medicine, eds Ratner BD, Hoffmann AS, Schoen FJ, and Lemons JE, 80–6. Amsterdam, Elsevier Academic Press

  30. Janovsky EC, Kupper LL, Hulka BS (2000) Meta-analysis of the relation between silicone breast implants and the risk of connective tissue disease. N Engl J Med 342:781–790

    Article  Google Scholar 

  31. Rachal WF, Burton TC (1979) Changing concepts of failure after retinal detachment surgery. Arch Ophthalmol 97:480–483

    Article  CAS  PubMed  Google Scholar 

  32. Ryan SJ (1985) The pathophysiology of proliferative vitreoretinopathy in its management. Am J Ophthalmol 100:188–193

    Article  CAS  PubMed  Google Scholar 

  33. Hauser J, Esenwein SA, Awakowicz P, Steinau HU, Köller M, Halfmann H (2011) Sterilization of heat-sensitive silicone implant material by low-pressure gas plasma. Biomed Instrum Technol 45(1):75–79

    Article  PubMed  Google Scholar 

  34. Bartzoka V, McDermott MR, Brook MA (1999) Protein-Silicone Interactions. Adv Mater 11(3):257–259

    Article  CAS  Google Scholar 

  35. Heyes CD, Groll J, Möller M, Nienhaus GU (2007) Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces. Mol Biosyst 3(6):419–430

    Article  CAS  PubMed  Google Scholar 

  36. Nagahama K, Saito T, Quchi T, Ohya Y (2010) Biodegradable nano-aggregates of star-shaped 8-arm PEG-PLLA block co-polymers for encapsulation of water-soluble macromolecules. J Biomater Sci Polym Ed 22:407–416

    Article  Google Scholar 

  37. Satulovsky J, Caringano MA, Szleifer I (2000) Kinetic and thermodynamic control of protein adsorption. Proc Natl Acad Sci U S A 1(97(16)):9037–9041

    Article  Google Scholar 

  38. Hoffmann J, Groll J, Heuts J, Rong H, Klee D, Ziemer G, Moeller M, Wendel HP (2006) Blood cell and plasma protein repellent properties of star-PEG-modified surface. J Biomater Sci Polym Ed 17(9):985–996

    Article  CAS  PubMed  Google Scholar 

  39. Cohen Tervaert JW, Kappel RM (2013) Silicone implant incompatibility syndrome (SIIS): A frequent cause of ASIA (Shoenfeld's syndrome). Immunol Res 56(2–3):293–298

    Article  CAS  PubMed  Google Scholar 

  40. Tervaert JW, Stegeman CA, Kallenberg CG (1998) Silicone exposure and vasculitis. Curr Opin Rheumatol 10:12–17

    Article  CAS  PubMed  Google Scholar 

  41. Parks CG, Conrad K, Cooper GS (1999) Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect 107(S5):793–802

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jewell M, Spear SL, Largent J, Oefelein MG, Adams WP Jr (2011) Anaplastic large T-cell lymphoma and breast implants: A review of the literature. Plast Reconstr Surg 128:651–661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance for this research project, from the Interdisciplinary Centre for Clinical Research BIOMAT within the Faculty of Medicine at the RWTH Aachen University, Aachen Center for Technology Transfer in Ophthalmology , Institute for Technical and Macromolecular Chemistry of RWTH Aachen University, is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas W. A. Weinberger.

Ethics declarations

Funding

The Interdisciplinary Centre for Clinical Research BIOMAT and the START program, both within the faculty of Medicine at the RWTH Aachen University, provided financial support in the form of grant funding. The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayoudh, W., Frentz, M., Carstesen, D. et al. Intraocular silicone implant to treat chronic ocular hypotony—preliminary feasibility data. Graefes Arch Clin Exp Ophthalmol 254, 2131–2139 (2016). https://doi.org/10.1007/s00417-016-3364-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3364-4

Keywords

Navigation