Skip to main content

Advertisement

Log in

Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare optic disc topography in eyes in three intraocular pressure (IOP) groups of <15 mmHg, 15–20 mmHg, and ≥21 mmHg using spectral domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy, adjusting for the degree of damage, as measured by retinal nerve fiber layer (RNFL) thickness and average visual field loss.

Methods

A total of 184 eyes of 112 patients with primary open-angle glaucoma were recruited into groups based on baseline untreated intraocular pressure (IOP) of <15 mmHg (normal-tension glaucoma [NTG], very low), 15–20 mmHg (NTG, medium), or ≥21 mmHg (high-tension glaucoma [HTG]). Patients underwent scanning laser ophthalmoscopy, SD-OCT, and Humphrey visual field testing. Univariate and multivariate models were created, accounting for degree of retinal ganglion cell (RGC) loss by either OCT RNFL thickness or visual field mean deviation (MD).

Results

Univariate and multivariate analyses demonstrated no morphological differences in HRT or OCT parameters among IOP groups that met Bonferroni-corrected statistical significance when using either MD or OCT RNFL as the damage criterion (p < 0.0063). The mean cup depth was shallower for the IOP <15 mmHg group than the IOP ≥21 mmHg group (p < 0.05) for both MD (p < 0.011) and OCT RNFL (p < 0.014).

Conclusion

Normal-tension and high-tension glaucoma are not distinguishable by optic nerve head topography with HRT and OCT when the degree of damage by Humphrey visual field testing is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agnifili L, Mastropasqua R, Frezzotti P et al (2015) Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol 93(1):e14–e21

    Article  PubMed  Google Scholar 

  2. Shields MB (2008) Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol 19(2):85–88

    Article  PubMed  Google Scholar 

  3. Mastropasqua R, Fasanella V, Agnifili L et al (2015) Advance in the pathogenesis and treatment of normal-tension glaucoma. Prog Brain Res 221:213–232

    Article  PubMed  Google Scholar 

  4. Caprioli J, Spaeth GL (1985) Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol 103(8):1145–1149

    Article  CAS  PubMed  Google Scholar 

  5. Yamazaki Y, Hayamizu F, Miyamoto S et al (1997) Optic disc findings in normal tension glaucoma. Jpn J Ophthal 41(4):260–267

    Article  CAS  Google Scholar 

  6. Gramer E, Althaus G, Leydhecker W (1986) Site and depth of glaucomatous visual field defects in relation to the size of the neuroretinal edge zone of the optic disk in glaucoma without hypertension, simple glaucoma, pigmentary glaucoma. A clinical study with the Octopus perimeter 201 and the optic nerve head analyzer. Klin Monatsbl Augenheilkd 189(3):190–198

    Article  CAS  PubMed  Google Scholar 

  7. Yamazaki Y, Koide C, Miyazawa T et al (1991) Comparison of retinal nerve-fiber layer in high- and normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 229:517–520

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann EM, Zangwill LM, Crowston JG et al (2007) Optic disk size and glaucoma. Surv Ophthalmol 52(1):32–49

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tomita G (2000) The optic nerve head in normal-tension glaucoma. Curr Opin Ophthalmol 11(2):116–120

    Article  CAS  PubMed  Google Scholar 

  10. Drance S, Anderson DR, Schulzer M et al (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131(6):699–708

    Article  CAS  PubMed  Google Scholar 

  11. Kitazawa Y, Shirato S, Yamamoto T (1986) Optic disc hemorrhage in low-tension glaucoma. Ophthalmology 93(6):853–857

    Article  CAS  PubMed  Google Scholar 

  12. Suh MH, Park KH (2011) Period prevalence and incidence of optic disc haemorrhage in normal tension glaucoma and primary open-angle glaucoma. Clin Exp Ophthalmol 39(6):513–519

    Article  PubMed  Google Scholar 

  13. Lewis RA, Hayreh SS, Phelps CD (1983) Optic disk and visual field correlations in primary open-angle and low-tension glaucoma. Am J Ophthalmol 96(2):148–152

    Article  CAS  PubMed  Google Scholar 

  14. Fazio P, Krupin T, Feitl ME et al (1990) Optic disc topography in patients with low-tension and primary open angle glaucoma. Arch Ophthalmol 108(5):705–708

    Article  CAS  PubMed  Google Scholar 

  15. Motolko M, Drance SM, Douglas GR (1982) Visual field defects in low-tension glaucoma. Comparison of defects in low-tension glaucoma and chronic open angle glaucoma. Arch Ophthalmol 100(7):1074–1077

    Article  CAS  PubMed  Google Scholar 

  16. Yu M, Zhou W, Ye T (1997) A comparative study of visual field defects between primary open-angle and low tension glaucoma. Zhonghua Yan Ke Za Zhi 33(3):173–177

    CAS  PubMed  Google Scholar 

  17. Iester M, Mikelberg FS (1999) Optic nerve head morphologic characteristics in high-tension and normal-tension glaucoma. Arch Ophthalmol 117(8):1010–1013

    Article  CAS  PubMed  Google Scholar 

  18. Nakatsue T, Shirakashi M, Yaoeda K et al (2004) Optic disc topography as measured by confocal scanning laser ophthalmoscopy and visual field loss in Japanese patients with primary open-angle or normal-tension glaucoma. J Glaucoma 13(4):291–298

    Article  PubMed  Google Scholar 

  19. Leidl MC, Choi CJ, Syed ZA et al (2014) Intraocular pressure fluctuation and glaucoma progression: what do we know? Br J Ophthalmol 98(10):1315–1319

    Article  PubMed  Google Scholar 

  20. Foster PJ, Buhrmann R, Quigley HA et al (2002). The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86(2):238–242

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeger SL, Liang KY, Albert PS (1988) Models for longitudinal data - a generalized estimating equation approach. Biometrics 44(4):1049–1060

    Article  CAS  PubMed  Google Scholar 

  22. Budenz DL, Anderson DR, Varma R et al (2007) Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 114(6):1046–1052

    Article  PubMed  PubMed Central  Google Scholar 

  23. Quigley HA, Coleman AL, Dormanpease ME (1991) Larger optic-nerve heads have more nerve-fibers in normal monkey eyes. Arch Ophthalmol 109(10):1441–1443

    Article  CAS  PubMed  Google Scholar 

  24. Danesh-Meyer HV, Boland MV, Savino PJ et al (2010) Optic disc morphology in open-angle glaucoma compared with anterior ischemic optic neuropathies. Invest Ophthalmol Vis Sci 51(4):2003–2010

    Article  PubMed  PubMed Central  Google Scholar 

  25. Danesh-Meyer HV, Yap J, Frampton C et al (2014) Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography. Ophthalmology 121(8):1516–1523

    Article  PubMed  Google Scholar 

  26. Mok KH, Lee VW, So KF (2004) Retinal nerve fiber loss in high-and normal-tension glaucoma by optical coherence tomography. Optom Vis Sci 81(5):369–372

    Article  PubMed  Google Scholar 

  27. Konstantakopoulou E, Reeves BC, Fenerty C et al (2008) Retinal nerve fiber layer measures in high-and normal-tension glaucoma. Optom Vis Sci 85(7):538–542

    Article  PubMed  Google Scholar 

  28. Kim NR, Hong S, Kim JH et al (2013) Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma 22(2):133–139

    Article  PubMed  Google Scholar 

  29. Thonginnetra O, Greenstein VC, Chu D et al (2010) Normal versus high tension glaucoma: a comparison of functional and structural defects. J Glaucoma 19(3):151–157

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rho CR, Park HY, Lee NY et al (2012) Clock-hour laminar displacement and age in primary open-angle glaucoma and normal tension glaucoma. Clin Exp Ophthalmol 40(4):e183–e189

    Article  PubMed  Google Scholar 

  31. Kiriyama N, Ando A, Nambu H et al (2003) A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma and ocular hypertension. Graefes Arch Clin Exp Ophthalmol 241:541–545

    Article  PubMed  Google Scholar 

  32. Eid TE, Spaeth GL, Moster MR et al (1997) Quantitative differences between the optic nerve head and peripapillary retina in low-tension and high-tension primary open-angle glaucoma. Am J Ophthalmol 124:805–813

    Article  CAS  PubMed  Google Scholar 

  33. Woo SJ, Park KH, Kim DM (2003) Comparison of localized nerve fibre layer defects in normal tension glaucoma and primary open angle glaucoma. Br J Ophthalmol 87(6):695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kubota T, Khalil AK, Honda M et al (1999) Comparative study of retinal nerve fiber layer damage in Japanese patients with normal- and high-tension glaucoma. J Glaucoma 8(6):363–366

    Article  CAS  PubMed  Google Scholar 

  35. Kook M, Sung K, Kim S et al (2001) Study of retinal nerve fibre layer thickness in eyes with high tension glaucoma and hemifield defect. Br J Ophthalmol 85(10):1167–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Firat PG, Doganay S, Demirel EE et al (2013) Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol 251(3):831–838

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen V. Danesh-Meyer.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving humanparticipants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, A., Matheos, K., Prime, Z. et al. Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 255, 2219–2226 (2017). https://doi.org/10.1007/s00417-017-3779-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3779-6

Keywords

Navigation