Skip to main content

Advertisement

Log in

Influence of holding weights of different magnitudes on intraocular pressure and anterior eye biometrics

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study is aimed at determining the impact of holding weight corresponding to the 10% and 20% of participants’ body weight during 5-min on intraocular pressure (IOP) and anterior eye biometrics.

Methods

Eighteen healthy young adults grabbed two jugs with comfort-grip handles, which were filled with water in order to achieve the desirable load (10% and 20% of participants’ body weight). A rebound tonometer and Oculus Pentacam were used to assess IOP and anterior segment biometrics, respectively, at baseline, after 0.5, 2, 3.5, and 5 min of holding weights, as well as after 0.5 and 2 min of recovery in each experimental condition (control, 10%, and 20%).

Results

There was a significant effect of the load used on IOP (p = 0.016, ƞp2 = 0.215) and anterior chamber angle (p = 0.018, ƞp2 = 0.211), with the load corresponding to 20% of participants’ body weight promoting a significant IOP rise (corrected p value = 0.035, d = 0.67), and anterior chamber angle reduction (corrected p value = 0.029, d = 0.69) in comparison with the control condition. No effects of holding weight were observed for anterior chamber depth and central corneal thickness (p > 0.348).

Conclusions

Our data evidence that holding weight during 5 min increases IOP and narrows the anterior chamber angle, being these effects significant when using a load corresponding to 20% of body weight. Based on the current outcomes, lifting or carrying heavy loads may be discouraged for glaucoma patients or individuals at high risk for glaucoma onset, although future studies should explore the clinical relevance of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Read S, Collins M, Iskander D (2008) Diurnal variation of axial length, intraocular pressure, and anterior eye biometrics. Investig Ophthalmol Vis Sci 49:2911–2918. https://doi.org/10.1167/iovs.08-1833

    Article  Google Scholar 

  2. Prata TS, De Moraes CGV, Kanadani FN et al (2010) Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol 55:445–453. https://doi.org/10.1016/j.survophthal.2009.12.002

    Article  PubMed  Google Scholar 

  3. Garcia-Medina M, Pinazo-Duran MD, Zanon-Moreno V et al (2014) A two-year follow-up of oral antioxidant supplementation in primary open-angle glaucoma: an open-label, randomized, controlled trial. Acta Ophthalmol 93:546–554. https://doi.org/10.1111/aos.12629

    Article  CAS  PubMed  Google Scholar 

  4. Yoon J, Danesh-Meyer H (2019) Caffeine and the eye. Surv Ophthalmol 64:334–344. https://doi.org/10.1016/j.survophthal.2018.10.005

    Article  PubMed  Google Scholar 

  5. Wylegala A (2016) The effects of physical exercises on ocular physiology: a review. J Glaucoma 25:e843–e849. https://doi.org/10.4278/ajhp.111101-QUAN-395

    Article  PubMed  Google Scholar 

  6. Zhu MM, Lai JSM, Choy BNK et al (2018) Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmol 96:676–691. https://doi.org/10.1111/aos.13661

    Article  Google Scholar 

  7. Schuman JS, Massicotte EC, Connolly S et al (2000) Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology 107:127–133. https://doi.org/10.1016/S0161-6420(99)00015-9

    Article  CAS  PubMed  Google Scholar 

  8. Jiménez R, Vera J (2018) Effect of examination stress on intraocular pressure in university students. Appl Ergon 67:252–258. https://doi.org/10.1016/j.apergo.2017.10.010

    Article  PubMed  Google Scholar 

  9. Hecht I, Achiron A, Man V, Burgansky-Eliash Z (2017) Modifiable factors in the management of glaucoma: a systematic review of current evidence. Graefes Arch Clin Exp Ophthalmol 255:789–796. https://doi.org/10.1007/s00417-016-3518-4

    Article  PubMed  Google Scholar 

  10. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang BS, Xiao L, Liu J et al (2012) Dynamic changes in anterior segment morphology during the valsalva maneuver assessed with ultrasound biomicroscopy. Investig Ophthalmol Vis Sci 53:7286–7289. https://doi.org/10.1167/iovs.12-10497

    Article  Google Scholar 

  12. Li X, Wang W, Chen S et al (2016) Effects of Valsalva maneuver on anterior chamber parameters and choroidal thickness in healthy Chinese: an AS-OCT and SS-OCT study. Investig Opthalmology Vis Sci 57:OCT189. https://doi.org/10.1167/iovs.15-18449

    Article  Google Scholar 

  13. Castejon H, Chiquet C, Savy O et al (2010) Effect of acute increase in blood pressure on intraocular pressure in pigs and humans. Investig Ophthalmol Vis Sci 51:1599–1605. https://doi.org/10.1167/iovs.09-4215

    Article  Google Scholar 

  14. Pekel G, Acer S, Yagci R et al (2014) Impact of Valsalva maneuver on corneal morphology and anterior chamber parameters. Cornea 33:271–273. https://doi.org/10.1097/ico.0000000000000046

    Article  PubMed  Google Scholar 

  15. Zhang Z, Wang X, Jonas J et al (2014) Valsalva manoeuver, intra-ocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing intracranial and intra-ocular pressure study. Acta Ophthalmol 92:e475–e480. https://doi.org/10.1111/aos.12263

    Article  PubMed  Google Scholar 

  16. Aykan U, Erdurmus M, Yilmaz B, Bilge AH (2010) Intraocular pressure and ocular pulse amplitude variations during the Valsalva maneuver. Graefes Arch Clin Exp Ophthalmol 248:1183–1186. https://doi.org/10.1007/s00417-010-1359-0

    Article  PubMed  Google Scholar 

  17. Vera J, García-Ramos A, Jiménez R, Cárdenas D (2017) The acute effect of strength exercises at different intensities on intraocular pressure. Graefes Arch Clin Exp Ophthalmol 255:2211–2217. https://doi.org/10.1007/s00417-017-3735-5

    Article  PubMed  Google Scholar 

  18. Pakrou N, Gray T, Mills R et al (2008) Clinical comparison of the Icare tonometer and Goldmann applanation tonometry. J Glaucoma 17:43–47. https://doi.org/10.1097/IJG.0b013e318133fb32

    Article  PubMed  Google Scholar 

  19. Salim S, Du H, Wan J (2013) Comparison of intraocular pressure measurements and assessment of intraobserver and interobserver reproducibility with the portable icare rebound tonometer and goldmann applanation tonometer in glaucoma patients. J Glaucoma 22:325–329. https://doi.org/10.1097/IJG.0b013e318237caa2

    Article  PubMed  Google Scholar 

  20. Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K (2008) Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg 34:103–113. https://doi.org/10.1016/j.jcrs.2007.09.013

    Article  PubMed  Google Scholar 

  21. Baser G, Karahan E, Bilgin S, Unsal U (2018) Evaluation of the effect of daily activities on intraocular pressure in healthy people: is the 20 mmHg border safe? Int Ophthalmol 38:1963–1967. https://doi.org/10.1007/s10792-017-0684-2

    Article  PubMed  Google Scholar 

  22. Vera J, Jiménez R, Redondo B et al (2019) Effect of the level of effort during resistance training on intraocular pressure. Eur J Sport Sci 19:394–401. https://doi.org/10.1080/17461391.2018.1505959

    Article  PubMed  Google Scholar 

  23. Vieira GM, Oliveira HB, Tavares de Andrade D et al (2006) Intraocular pressure variation during weight lifting. Arch Ophthalomol 124:1251–1254. https://doi.org/10.1001/archopht.124.9.1251

    Article  Google Scholar 

  24. Sihota R, Dada T, Gupta V, Pandey R (2006) Narrowing of the anterior chamber angle during Valsalva maneuver: a possible mechanism for angle closure. Eur J Ophthalmol 16:81–91. https://doi.org/10.1177/112067210601600114

    Article  Google Scholar 

  25. Zhang X, Liu Y, Wang W et al (2017) Why does acute primary angle closure happen? Potential risk factors for acute primary angle closure. Surv Ophthalmol 62:635–647. https://doi.org/10.1016/j.survophthal.2017.04.002

    Article  PubMed  Google Scholar 

  26. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman LKE (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56. https://doi.org/10.1097/00132578-200310000-00007

    Article  PubMed  Google Scholar 

  27. Srinivasan S, Choudhari NS, Baskaran M et al (2016) Diurnal intraocular pressure fluctuation and its risk factors in angle-closure and open-angle glaucoma. Eye 30:362–368. https://doi.org/10.1038/eye.2015.231

    Article  CAS  PubMed  Google Scholar 

  28. Susanna R, Clement C, Goldberg I, Hatanaka M (2017) Applications of the water drinking test in glaucoma management. Clin Exp Ophthalmol 45:625–631. https://doi.org/10.1111/ceo.12925

    Article  PubMed  Google Scholar 

  29. Galambos P, Vafiadis J, Vilchez SE et al (2006) Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after postural change. Ophthalmology 113:1832–1836

    Article  PubMed  Google Scholar 

  30. Hatanaka M, Sakata LM, Susanna R Jr et al (2016) Comparison of the intraocular pressure variation provoked by postural change and by the water drinking test in primary open-angle glaucoma and normal patients. J Glaucoma 25:914–918

    Article  PubMed  Google Scholar 

  31. Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 88:648–655. https://doi.org/10.1016/j.exer.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  32. Fernández-Vigo JI, García-Feijóo J, Martínez-de-la-Casa JM et al (2015) Morphometry of the trabecular meshwork in vivo in a healthy population using fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 56:1782–1788. https://doi.org/10.1167/iovs.14-16154

    Article  PubMed  Google Scholar 

  33. Vera J, Jiménez R, Redondo B et al (2018) Fitness level modulates intraocular pressure responses to strength exercises. Curr Eye Res 43:740–746. https://doi.org/10.1080/02713683.2018.1431289

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all the participants who selflessly collaborated in this research, and to OCULUS Iberia S.L. (Madrid, Spain) for donating the Pentacam system used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatríz Redondo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Granada and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera, J., Redondo, B., Molina, R. et al. Influence of holding weights of different magnitudes on intraocular pressure and anterior eye biometrics. Graefes Arch Clin Exp Ophthalmol 257, 2233–2238 (2019). https://doi.org/10.1007/s00417-019-04406-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04406-y

Keywords

Navigation