Skip to main content

Advertisement

Log in

Effects of caffeine intake on the biomechanical properties of the cornea: a placebo-controlled, double-blind, crossover pilot study in low caffeine consumers

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the short-term effects of caffeine intake on the biomechanical properties of the cornea, as well as its possible association with the intraocular pressure (IOP), as measured by corneal visualization Scheimpflug technology (CorVis ST) in healthy subjects.

Methods

Twenty-two low caffeine consumers ingested either a caffeine (4 mg/Kg) or placebo capsule in two separate sessions. IOP and corneal biomechanics parameters, including time, velocity, length, and deformation amplitude at the first applanation (A1T, A1V, A1L, and A1D, respectively); time, velocity, length, and deformation amplitude at the second applanation (A2T, A2V, A2L, and A2D, respectively); time at the highest concavity (HCT), radius curvature at the highest concavity (HCR), deformation amplitude at the highest concavity (HCDA), and peak distance (PD), were measured with the Corvis ST before and after 30 min, 60 min, and 90 min of caffeine/placebo intake.

Results

Caffeine intake reduced the corneal deformability, inducing significant changes in A1T, A2V, A2T, HCDA, HCT, and PD (all p values < 0.05). Non-corrected and biomechanically corrected IOP values were higher after caffeine intake (p = 0.001 and 0.033, respectively). Also, the changes in IOP after caffeine intake were positively associated with A1T (r = 0.790 to 0.962), and negatively associated with A2T (r = − 0.230 to − 0.722) and PD (r = − 0.506 to − 0.644).

Conclusions

Caffeine intake reduces the corneal deformability, with these changes being partially associated with the IOP rise. These findings evidence that exogenous factors such as caffeine intake should be taken into consideration when making clinical decisions that are based on the biomechanical properties of the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kotecha A (2007) What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol 52:109–114. https://doi.org/10.1016/j.survophthal.2007.08.004

    Article  Google Scholar 

  2. Esporcatte L, Salomão M, Lopes B et al (2020) Biomechanical diagnostics of the cornea. Eye Vis 7:9. https://doi.org/10.1097/IIO.0000000000000172

    Article  Google Scholar 

  3. Kling S, Hafezi F (2017) Corneal biomechanics – a review. Ophthalmic Physiol Opt 37:240–252. https://doi.org/10.1111/opo.12345

    Article  PubMed  Google Scholar 

  4. Ma J, Wang Y, Wei P, Jhanji V (2018) Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv Ophthalmol 63:851–861. https://doi.org/10.1016/j.survophthal.2018.05.004

    Article  PubMed  Google Scholar 

  5. Bao F, Geraghty B, Wang Q, Elsheikh A (2016) Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye Vis 3:18. https://doi.org/10.1186/s40662-016-0048-4

    Article  Google Scholar 

  6. Ogbuehi KC, Osuagwu UL (2014) Corneal biomechanical properties: precision and influence on tonometry. Contact Lens Anterior Eye 37:124–131. https://doi.org/10.1016/j.clae.2013.09.006

    Article  PubMed  Google Scholar 

  7. Gordon M, Beiser J, Brandt J et al (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720. https://doi.org/10.1001/archopht.120.6.714

    Article  PubMed  Google Scholar 

  8. Strobbe E, Cellini M, Barbaresi U, Campos EC (2014) Influence of age and gender on corneal biomechanical properties in a healthy Italian population. Cornea 33:968–972. https://doi.org/10.1097/ICO.0000000000000187

    Article  PubMed  Google Scholar 

  9. Bueno-Gimeno I, España-Gregori E, Gene-Sampedro A et al (2014) Relationship among corneal biomechanics, refractive error, and axial length. Optom Vis Sci 91:507–513. https://doi.org/10.1097/opx.0000000000000231

    Article  PubMed  Google Scholar 

  10. Oltulu R, Satirtav G, Ersan I et al (2016) The effect of dehydration and fasting on corneal biomechanical properties and intraocular pressure. Eye Contact Lens 42:392–394. https://doi.org/10.1097/ICL.0000000000000220

    Article  PubMed  Google Scholar 

  11. Schweitzer C, Korobelnik JF, Boniol M et al (2016) Associations of biomechanical properties of the cornea with environmental and metabolic factors in an elderly population: the ALIENOR study. Investig Ophthalmol Vis Sci 57:2003–2011. https://doi.org/10.1167/iovs.16-19226

    Article  CAS  Google Scholar 

  12. Heckman M, Weil J, Gonzalez de Mejia E (2010) Caffeine (1, 3, 7-trimethyxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75:77–87. https://doi.org/10.1111/j.1750-3841.2010.01561.x

    Article  CAS  Google Scholar 

  13. Grosso G, Godos J, Galvano F, Giovannucci EL (2017) Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr 37:131–156. https://doi.org/10.1146/annurev-nutr-071816-064941

    Article  PubMed  CAS  Google Scholar 

  14. Yoon JJ, Danesh-Meyer HV (2019) Caffeine and the eye. Surv Ophthalmol 64:334–344. https://doi.org/10.1016/j.survophthal.2018.10.005

    Article  PubMed  Google Scholar 

  15. Kurata K, Maeda M, Nishida E et al (1997) Relationship between caffeine induced ocular hypertension and ultrastructure changes of non pigmented ciliary epithelial cells in rats. J Toxicol Sci 22:447–454

    Article  CAS  Google Scholar 

  16. Monika KH, Dariusz T, Hieronim B (2010) Changes in thickness of each layer of developing chicken cornea after administration of caffeine. Folia Histochem Cytobiol 48:273–277. https://doi.org/10.2478/v10042-010-0043-x

    Article  Google Scholar 

  17. Bardak H, Gunay M, Mumcu U, Bardak Y (2016) Effect of single administration of coffee on pupil size and ocular wavefront aberration measurements in healthy subjects. Biomed Res Int:9578308. https://doi.org/10.1155/2016/9578308

  18. Matsuura M, Hirasawa K, Murata H et al (2017) The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma. Sci Rep 7:1–7. https://doi.org/10.1038/srep40798

    Article  CAS  Google Scholar 

  19. Herber R, Ramm L, Spoerl E et al (2019) Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J Cataract Refract Surg:1–11. https://doi.org/10.1016/j.jcrs.2018.12.015

  20. Kataria P, Padmanabhan P, Gopalakrishnan A et al (2019) Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg 45:328–336. https://doi.org/10.1016/j.jcrs.2018.10.030

    Article  PubMed  Google Scholar 

  21. Lanza M, Cennamo M, Iaccarino S et al (2015) Evaluation of corneal deformation analyzed with a Scheimpflug based device. Contact Lens Anterior Eye 38:89–93. https://doi.org/10.1016/j.clae.2014.10.002

    Article  PubMed  Google Scholar 

  22. Steinberg J, Siebert M, Katz T et al (2018) Tomographic and biomechanical scheimpflug imaging for keratoconus characterization: a validation of current indices. J Refract Surg 34:840–847. https://doi.org/10.3928/1081597X-20181012-01

    Article  PubMed  Google Scholar 

  23. Vera J, Redondo B, Molina R et al (2019) Effects of caffeine on intraocular pressure are subject to tolerance: a comparative study between low and high caffeine consumers. Psychopharmacology 236:811–819

    Article  CAS  Google Scholar 

  24. Okuno T, Sugiyama T, Tominaga M et al (2002) Effects of caffeine on microcirculation of the human ocular fundus. Jpn J Ophthalmol 46:170–176. https://doi.org/10.1016/S0021-5155(01)00498-1

    Article  PubMed  CAS  Google Scholar 

  25. Terai N, Spoerl E, Pillunat LE, Stodtmeister R (2012) The effect of caffeine on retinal vessel diameter in young healthy subjects. Acta Ophthalmol 90:524–528. https://doi.org/10.1111/j.1755-3768.2012.02486.x

    Article  CAS  Google Scholar 

  26. Zengin MO, Cinar E, Karahan E et al (2015) The effect of caffeine on choroidal thickness in young healthy subjects. Cutan Ocul Toxicol 34:112–116. https://doi.org/10.3109/15569527.2014.912659

    Article  PubMed  CAS  Google Scholar 

  27. Vural AD, Kara N, Sayin N et al (2014) Choroidal thickness changes after a single administration of coffee in healthy subjects. Retina 34:1223–1228. https://doi.org/10.1097/IAE.0000000000000043

    Article  PubMed  CAS  Google Scholar 

  28. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  29. Kennedy DO, Haskell CF (2011) Cerebral blood flow and behavioural effects of caffeine in habitual and non-habitual consumers of caffeine: a near infrared spectroscopy study. Biol Psychol 86:298–306. https://doi.org/10.1016/j.biopsycho.2010.12.010

    Article  PubMed  Google Scholar 

  30. National Health and Medical Research Council (2010) Guidelines for the screening, prognosis, diagnosis, management and prevention of glaucoma. 47–65

  31. Kotecha A, Crabb DP, Spratt A, Garway-Heath DF (2009) The relationship between diurnal variations in intraocular pressure measurements and central corneal thickness and corneal hysteresis. Investig Ophthalmol Vis Sci 50:4229–4236. https://doi.org/10.1167/iovs.08-2955

    Article  Google Scholar 

  32. Oculus Optikgeräte GmbH. Corvis ST pocket book. Oculus Optikgeräte GmbH, Wetzlar. https://www.oculus.de/en/products/tonometer/corvis-st/highlights/. Accessed 01 July 2020

  33. Joda AA, Mohi M, Shervin S, Kook D (2015) Computer methods in biomechanics and biomedical engineering eevelopment and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Eng 19:943–953. https://doi.org/10.1080/10255842.2015.1077515

    Article  Google Scholar 

  34. Altinkaynak H, Ceylan E, Kartal B et al (2016) Measurement of choroidal thickness following caffeine intake in healthy subjects. Curr Eye Res 41:708–714. https://doi.org/10.3109/02713683.2015.1020168

    Article  PubMed  CAS  Google Scholar 

  35. Karti O, Zengin MO, Kerci SG et al (2019) Acute effect of caffeine on macular microcirculation in healthy subjects. Retina 39:964–971. https://doi.org/10.1097/IAE.0000000000002058

    Article  PubMed  CAS  Google Scholar 

  36. Uzun F, Aslan MG, Öter K, Kaim M (2019) The acute effects of single cup of coffee on ocular biometric parameters in healthy subjects. J Curr Ophthalmol:3–7. https://doi.org/10.1016/j.joco.2019.05.003

  37. Redondo B, Vera J, Molina R, Jiménez R (2019) Short-term effects of caffeine intake on anterior chamber angle and intraocular pressure in low caffeine consumers. Graefe’s Arch Clin Exp Ophthalmol 258(3):613–619

    Article  CAS  Google Scholar 

  38. Seiler TG, Shao P, Frueh BE et al (2018) The influence of hydration on different mechanical moduli of the cornea. Graefes Arch Clin Exp Ophthalmol 256:1653–1660. https://doi.org/10.1007/s00417-018-4069-7

    Article  PubMed  Google Scholar 

  39. Singh M, Han Z, Li J et al (2018) Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J Cataract Refract Surg 44:1023–1031. https://doi.org/10.1016/j.jcrs.2018.03.036

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kling S, Marcos S (2013) Contributing factors to corneal deformation in air puff measurements. Investig Ophthalmol Vis Sci 54:5078–5085. https://doi.org/10.1167/iovs.13-12509

    Article  Google Scholar 

  41. Ruxton C (2008) The impact of caffeine on mood, cognitive function, performance and hydration: a review of benefits and risks. Nutr Bull 33:15–25

    Article  Google Scholar 

  42. Edmund C (1988) Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol 66:134–140

    Article  CAS  Google Scholar 

  43. Johnson RD, Nguyen MT, Lee N, Hamilton DR (2011) Corneal biomechanical properties in normal, forme fruste keratoconus, and manifest keratoconus after statistical correction for potentially confounding factors. Cornea 30:516–523. https://doi.org/10.1097/ICO.0b013e3181f0579e

    Article  PubMed  Google Scholar 

  44. Vinciguerra R, Ambrósio R, Elsheikh A et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810. https://doi.org/10.3928/1081597X-20160629-01

    Article  PubMed  Google Scholar 

  45. Li M, Wang M, Guo W et al (2011) The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 249:435–442. https://doi.org/10.1007/s00417-010-1455-1

    Article  PubMed  CAS  Google Scholar 

  46. Kurata K, Fujimoto H, Tsukuda R et al (1998) Aqueous humor dynamics in beagle dogs with caffeine-induced ocular hypertension. J Vet Med Sci 60:737–739. https://doi.org/10.1292/jvms.60.737

    Article  PubMed  CAS  Google Scholar 

  47. Salvetat ML, Zeppieri M, Tosoni C et al (2015) Corneal deformation parameters provided by the corvis-st pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma 24:568–574. https://doi.org/10.1097/IJG.0000000000000133

    Article  PubMed  Google Scholar 

  48. Susanna BN, Ogata NG, Jammal AA et al (2019) Corneal biomechanics and visual field progression in eyes with seemingly well-controlled intraocular pressure. Ophthalmology 126:1640–1646. https://doi.org/10.1016/j.ophtha.2019.07.023

    Article  PubMed  Google Scholar 

  49. Vinciguerra R, Rehman S, Vallabh NA et al (2020) Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol 104:121–126. https://doi.org/10.1136/bjophthalmol-2018-313493

    Article  PubMed  Google Scholar 

  50. Brown KE, Congdon NG (2006) Corneal structure and biomechanics: impact on the diagnosis and management of glaucoma. Curr Opin Ophthalmol 17:338–343

    Article  Google Scholar 

  51. Barone JJ, Roberts HR (1996) Caffeine consumption. Fd Chem Toxic 34:119–129. https://doi.org/10.1016/0278-6915(95)00093-3

    Article  CAS  Google Scholar 

  52. Leske M (2009) Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 20:73–78. https://doi.org/10.1097/ICU.0b013e32831eef82

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miki A, Maeda N, Ikuno Y et al (2017) Factors associated with corneal deformation responses measured with a dynamic scheimpflug analyzer. Investig Ophthalmol Vis Sci 58:538–544. https://doi.org/10.1167/iovs.16-21045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Redondo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Granada Institutional Review Board (IRB approval: 438/CEIH/2017) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, R., Molina, R., Redondo, B. et al. Effects of caffeine intake on the biomechanical properties of the cornea: a placebo-controlled, double-blind, crossover pilot study in low caffeine consumers. Graefes Arch Clin Exp Ophthalmol 258, 2449–2458 (2020). https://doi.org/10.1007/s00417-020-04835-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04835-0

Keywords

Navigation