Skip to main content

Advertisement

Log in

Effect of refractive status on retinal nerve fiber layer thickness in Chinese Population

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the relationship between retinal nerve fiber layer (RNFL) thickness and other related parameters measured by spectral-domain optical coherence tomography and the refractive error of eyes.

Methods

A total of 5394 subjects were enrolled in this population-based cohort study, who were divided into three groups by refractive state after they underwent a standardized ophthalmic examination: emmetropia (the absolute value should range from 0 to 0.5 D), low-moderate myopia (the absolute value of myopic error should range from 0.5 to 6 D), and high myopia (the absolute value of myopic error should be over than 6 D). R 3.6.1 software was adopted for statistical analysis.

Results

Two thousand five hundred fifty-two subjects (4548 eyes) were collected in this study, with an average age of 53.14 ± 10.64 years. There were significant differences among groups in average central corneal curvature, spherical equivalent, and axial length (P < 0.001). The measurements of average retinal nerve fiber layer (RNFL) were 113.95 ± 10.62 μm, 112.97 ± 11.59 μm, and 101.88 ± 15.67 μm, respectively, in the emmetropia, low-moderate, and high myopia groups (P < 0.001). Meanwhile, there was a decreasing trend of cup area, cup volume, disc area, and rim area in the high myopia group compared with the emmetropia group (P < 0.001).

Conclusion

The measurements of RNFL thickness vary greatly with refractive error, and this study indicated that it is of great significance for the accurate diagnosis of glaucoma to establish an individualized RNFL thickness database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bourne RR, Stevens GA, White RA et al (2013) Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health 1:e339–e349. https://doi.org/10.1016/s2214-109x(13)70113-x

    Article  Google Scholar 

  2. Fricke TR, Jong M, Naidoo KS et al (2018) Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br J Ophthalmol 102:855–862. https://doi.org/10.1136/bjophthalmol-2017-311266

    Article  Google Scholar 

  3. Katz J, Tielsch JM, Sommer A (1997) Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci 38:334–340

    CAS  Google Scholar 

  4. Wong TY, Foster PJ, Hee J et al (2000) Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci 41:2486–2494

    CAS  Google Scholar 

  5. Saw SM, Katz J, Schein OD et al (2000) Epidemiology of myopia. Epidemiol Rev 18:175–187. https://doi.org/10.1097/apo.0000000000000236

    Article  Google Scholar 

  6. Xu L, Wang Y, Wang S et al (2007) High myopia and glaucoma susceptibility the Beijing Eye Study. Ophthalmology 114:216–220. https://doi.org/10.1016/j.ophtha.2006.06.050

    Article  Google Scholar 

  7. Tan CS, Chan YH, Wong TY et al (2011) Prevalence and risk factors for refractive errors and ocular biometry parameters in an elderly Asian population: the Singapore Longitudinal Aging Study (SLAS). Eye (Lond) 25:1294–1301. https://doi.org/10.1038/eye.2011.144

    Article  CAS  Google Scholar 

  8. Mitchell P, HourihanSandbach F et al (1999) The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 106:2010–2015. https://doi.org/10.1016/s0161-6420(99)90416-5

    Article  CAS  Google Scholar 

  9. Seo S, Lee CE, Jeong JH (2017) Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. BMC Ophthalmol 17:22. https://doi.org/10.1186/s12886-017-0419-1

    Article  Google Scholar 

  10. Asai T, Ikuno Y, Akiba M et al (2016) Analysis of peripapillary geometric characters in high myopia using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 57:137–144. https://doi.org/10.1167/iovs.15-17510

    Article  CAS  Google Scholar 

  11. Ohno-Matsui K, Akiba M, Moriyama M et al (2012) Acquired optic nerve and peripapillary pits in pathologic myopia. Ophthalmology 119:1685–1692. https://doi.org/10.1016/j.ophtha.2012.01.047

    Article  Google Scholar 

  12. Tan A, Tan GS, Denniston AK et al (2018) An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond) 32:262–286. https://doi.org/10.1038/eye.2017.181

    Article  CAS  Google Scholar 

  13. Petzold A, de Boer JF, Schippling S et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9:921–932. https://doi.org/10.1016/s1474-4422(10)70168-x

    Article  Google Scholar 

  14. Rebolleda G, Gonzalez-Lopez JJ, Munoz-Negrete FJ et al (2013) Color-code agreement among stratus, cirrus, andspectralis optical coherence tomography in relapsing-remitting multiple sclerosis with and without prior optic neuritis. Am J Ophthalmol 155:890–897. https://doi.org/10.1016/j.ajo.2012.11.025

    Article  Google Scholar 

  15. Gili P, Flores-Rodriguez P, Martin-Rios MD et al (2013) Anatomical and functional impairment of the nervefiber layer in patients with optic nerve head drusen. Graefes Arch Clin Exp Ophthalmol 251:2421–2428

    Article  Google Scholar 

  16. Kang SH, Hong SW, Im SK et al (2010) Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 51:4075–4083. https://doi.org/10.1167/iovs.09-4737

    Article  Google Scholar 

  17. Park SH, Park KH, Kim JM et al (2010) Relation between axial length and ocular parameters. Ophthalmologica 224:188–193. https://doi.org/10.1159/000252982

    Article  Google Scholar 

  18. Hoh ST, Lim MC, Seah SK et al (2006) Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology 113:773–777. https://doi.org/10.1016/j.ophtha.2006.01.058

    Article  Google Scholar 

  19. Melo GB, Libera RD, Barbosa AS et al (2006) Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol 142:858–860. https://doi.org/10.1016/j.ajo.2006.05.022

    Article  Google Scholar 

  20. Li S, Wang X, Li S, Wu G et al (2010) Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:429–434. https://doi.org/10.1007/s00417-009-1241-0

    Article  Google Scholar 

  21. Kostanyan T, Wollstein G, Schuman JS (2015) New developments in optical coherence tomography. Curr Opin Ophthalmol 26:110–115. https://doi.org/10.1097/ICU.0000000000000133

    Article  Google Scholar 

  22. Liu T, Tatham AJ, Gracitelli CP et al (2015) Rates of retinal nerve Fiber layer loss in contralateral eyes of glaucoma patients with unilateral progression by conventional methods. Ophthalmology 122:2243–2251. https://doi.org/10.1016/j.ophtha.2015.07.027

    Article  Google Scholar 

  23. Tai ELM, Ling JL, Gan EH et al (2018) Comparison of peripapillary retinal nerve fiber layer thickness between myopia severity groups and controls. Int J Ophthalmol 11:274–278. https://doi.org/10.18240/ijo.2018.02.16

    Article  Google Scholar 

  24. Kai C, Jie H, Ye Z et al (2019) Design, methodology, and preliminary results of the follow-up of a population-based cohort study in rural area of northern China: Handan Eye Study. Chin Med J (Engl) 132:2157–2167. https://doi.org/10.1097/CM9.0000000000000418

    Article  Google Scholar 

  25. Nowroozizadeh S, Cirineo N, Amini N et al (2014) Influence of correction of ocular magnification on spectral-domain OCT retinal nerve fiber layer measurement variability and perfor-mance. Invest Ophthalmol Vis Sci 55:3439–3446. https://doi.org/10.1167/iovs.14-13880

    Article  Google Scholar 

  26. Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367

    Article  CAS  Google Scholar 

  27. Öner V, Taş M, Türkcü FM et al (2013) Evaluation of Peripapillary Retinal Nerve Fiber Layer Thickness of Myopic and Hyperopic Patients: A Controlled Study by Stratus Optical Coherence T omography. Curr Eye Res 38:102–107

    Article  Google Scholar 

  28. WHO. Blindness and vision impairment. Oct 8, 2020. https://www.who.int/news-room/fact-sheets/detail/blindness-and visual-impairment (accessed Nov 3, 2020).

  29. Hong SW, Ahn MD, Kang SH et al (2010) Analysis of peripapillary retinal nerve fiber distribution in normal young adults. Invest Ophthalmol Vis Sci 51:3515–3523. https://doi.org/10.1167/iovs.09-4888

    Article  Google Scholar 

  30. Saw SM (2006) How blinding is pathological myopia. Br J Ophthalmol 90:525–526. https://doi.org/10.1136/bjo.2005.087999

    Article  Google Scholar 

  31. Fricke TR, Jong M, Naidoo KS et al (2018) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Br J Ophthalmol 102:855–862. https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  Google Scholar 

  32. Wu SY, Nemesure B, Leske MC (1999) Refractive errors in a black adult population: the Barbados Eye Study. Invest Ophthalmol Vis Sci 40:2179–2184

    CAS  Google Scholar 

  33. Wu SY, Yoo YJ, Nemesure B et al (2005) Barbados Eyr Studies Group. Nine-year refractive changes in the Barbados Eye Studies. Invest Ophthalmol Vis Sci 46:4032–4039. https://doi.org/10.1167/iovs.05-0332

    Article  Google Scholar 

  34. Bae SH, Kang SH, Feng CS et al (2016) Influence of Myopia on Size of Optic Nerve Head and Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography. Korean J Ophthalmol 30:335–343. https://doi.org/10.3341/kjo.2016.30.5.335

    Article  Google Scholar 

  35. Xu L, Li J, Cui T, Fan G et al (2005) Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology 112:1676–1683. https://doi.org/10.1016/j.ophtha.2005.05.015

    Article  Google Scholar 

  36. Lee SU, Han SP, Kim BJ et al (2020) Association of dipping status of blood pressure, visual field defects, and retinal nerve fiber layer thickness in patients with normotensive glaucoma. Medicine 99:e23565. https://doi.org/10.1097/MD.0000000000023565

    Article  CAS  Google Scholar 

  37. Tan CS, Ouyang Y, Ruiz H et al (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:261e6

    Google Scholar 

  38. Usui S, Ikuno Y, Akiba M et al (2012) Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci 53:2300e7

    Article  Google Scholar 

  39. Chen SJ, Cheng CY, Li AF et al (2012) Prevalence and associated risk factors of myopic maculopathy in elderly Chinese: the Shihpai eye study. Invest Ophthalmol Vis Sci 53:4868e73

    Article  Google Scholar 

  40. Mutti DO, Hayes JR, Lynn MG et al (2007) Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 48:2510–2519. https://doi.org/10.1167/iovs.06-0562

    Article  Google Scholar 

  41. Jonas JB, Wang YX, Dong L et al (2020) High Myopia and Glaucoma-Like Optic Neuropathy. Asia-Pacific J Ophthalmol 9:234–238. https://doi.org/10.1097/APO.0000000000000288

    Article  Google Scholar 

  42. Johnson BM, Miao M, Sadun AA (1987) Age-related decline of human optic nerve axon populations. Age 10:5–9. https://doi.org/10.1007/bf02431765

    Article  Google Scholar 

  43. Ctori I, Gruppetta S (2015) Huntjens B (2015) The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length. Graefes Arch Clin Exp Ophthalmol 253:733–738. https://doi.org/10.1007/s00417-014-2915-9

    Article  Google Scholar 

  44. Shpak AA, Korobkova MV (2020) Causes of ganglion cell-inner plexiform layer thinning in myopic eyes. Graefes Arch Clin Exp Ophthalmol 2020 Jan 258:1. https://doi.org/10.1007/s00417-019-04513-w

    Article  CAS  Google Scholar 

  45. Harizman N, Oliveira C, Chiang A et al (2006) The ISNT Rule and Differentiation of Normal From Glaucomatous Eyes. Arch Ophthalmol 124:1579–1583. https://doi.org/10.1001/archopht.124.11.1579

    Article  Google Scholar 

  46. Choi JA, Kim JS, Park HY et al (2014) The foveal position relative to the optic disc and the retinal nerve fiber layer thickness profile in myopia. Invest Ophthalmol Vis Sci 55:1419–1426. https://doi.org/10.1167/iovs.13-13604

    Article  Google Scholar 

  47. Moriyama M, Ohno-Matsui K, Hayashi K et al (2011) Topographic Analyses of Shape of Eyes with Pathologic Myopia by High-Resolution Three-Dimensional Magnetic Resonance Imaging-ScienceDirect. Ophthalmology 118:1626–1637. https://doi.org/10.1016/j.ophtha.2011.01.018

    Article  Google Scholar 

  48. Leung CK, Yu M & Weinreb RN (2012) Progression Patterns of Retinal Nerve Fiber Layer (RNFL) Defects in Glaucoma. Arvo Meeting Abstracts 53.https://doi.org/10.1016/j.ophtha.2012.03.044

  49. Wu J, Du Y, Lin C et al (2022) Retinal nerve fibre layer thickness measured with SD-OCT in a population-based study: the Handan Eye Study. Br J Ophthalmol 0:1–9. https://doi.org/10.1136/bjophthalmol-2021-320618

    Article  Google Scholar 

  50. Parikh RS, Parikh SR, Sekhar GC et al (2007) Normal Age-Related Decay of Retinal Nerve Fiber Layer Thickness. Ophthalmology 114:921–926. https://doi.org/10.1016/j.ophtha.2007.01.023

    Article  Google Scholar 

  51. Budenz DL, Anderson DR, Varma R et al (2007) Determinants of Normal Retinal Nerve Fiber Layer Thickness Measured by Stratus OCT. Ophthalmology 114:1046–1052. https://doi.org/10.1016/j.ophtha.2006.08.046

    Article  Google Scholar 

  52. Ohno-Matsui K, Akiba M, Modegi T et al (2012) Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia. Invest Ophthalmol Vis 53:6046–6061. https://doi.org/10.1167/iovs.12-10161

    Article  Google Scholar 

Download references

Funding

National Science and Technology Infrastructure Program,KJB-KJZC-2011-001,Ningli Wang,National Natural Science Foundation of China,81730027,Ningli Wang

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Jian Wu completed the design, data collection, data analysis and manuscript writing of this study. Yifan Du participated in the method design of this study, Caixia Lin participated in the statistical analysis of this study, Wei Chen participated in the grammar modification of the manuscript, Jianli Du and Qianqian Ji participated in the later revision of this study. Ningli Wang was the corresponding author of this study, is responsible for the overall content as guarantor, accepts full responsibility for the finished work and the conduct of the study, had access to the data.

Corresponding author

Correspondence to Ningli Wang.

Ethics declarations

Ethics approval and consent to participate

According to the Helsinki Declaration, our study has obtained the ethical clearance from the Ethics Committee of Beijing Tongren Hospital and written informed consent from all participants. For those who are illiterate or blind, the consent was read to them and the consent form was marked with an inked forefinger. After that, the consent form with an inked forefinger was approved by the Ethics Committee.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to the field

Considering RNFL thickness in the diagnosis of glaucoma, the impact of the refractive error on the retinal nerve fiber layer thickness is an important factor, so it is of significance to explore the influence. This study attempts to show the impact of different degrees of refractive error on RNFL thickness, hoping that related materials can be available for such kind of research.

Electronic supplementary material

Appendix

Appendix

Table 4

Table 4 Appendix: the Handan Eye Study

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Du, Y., Lin, C. et al. Effect of refractive status on retinal nerve fiber layer thickness in Chinese Population. Graefes Arch Clin Exp Ophthalmol 261, 201–211 (2023). https://doi.org/10.1007/s00417-022-05753-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05753-z

Keywords

Navigation