Skip to main content
Log in

Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Development of neurones and fibres expressing P2X3 receptors in the myenteric plexus of rat stomach and coexistence of the P2X3 receptor with calbindin, calretinin and NOS during postnatal development, were investigated with immunostaining methods. Extrinsic nerves expressing P2X3 receptors appeared as early as E12 and were localised in the trunk and branches of the vagus nerve, which extended rapidly onto the whole rat stomach from E12 to E14. Intrinsic neurone cell bodies with P2X3-immunoreactivity in the myenteric ganglia were first demonstrated postnatally at P1, and at P14, when the number of neurones expressing the P2X3 receptor peaked at 45%. P2X3 receptor-immunoreactivity decreased subsequently, and at P60 only about 11% were P2X3-immunoreactive. Intraganglionic laminar nerve endings and intramuscular arrays were first demonstrated postnatally at P1 and P7, respectively. In the early postnatal days, there were many growth cone-like structures with strong P2X3 immunostaining associated with these endings and arrays. Double-immunostaining showed that 9–15% of P2X3-immunoreactive neurones in the gastric myenteric plexus expressed calbindin D-28 k only in the early postnatal days, while 14–21% of neurones from P1 to P60 increasingly expressed calretinin. About 20% of neurones with P2X3 immunoreactivity coexpressed NOS throughout perinatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H
Fig. 2A–E
Fig. 3A–C
Fig. 4A–C
Fig. 5A–L

Similar content being viewed by others

References

  • Berthoud HR, Neuhuber WL (2000) Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85:1–17

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR, Powley T (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    CAS  PubMed  Google Scholar 

  • Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar ending IGLEs in the rat gastrointestinal tract. Anat Embryol 195:183–191

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Ren J, De Vries M, Schnegelsberg B, Cockayne DA, Ford APDW, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    CAS  PubMed  Google Scholar 

  • Burnstock G (2001) Purine-mediated signaling in pain and visceral perception. Trends Pharmacol Sci 22:182–188

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6:526–532

    Article  CAS  PubMed  Google Scholar 

  • Castellucci P, Robbins HL, Furness JB (2003) P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  Google Scholar 

  • Cheung KK, Burnstock G (2002) Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis. J Comp Neurol 443:368–382

    Article  CAS  PubMed  Google Scholar 

  • Clerc N, Condamin M (1987) Selective labeling of vagal sensory nerve fibers in the lower esophageal sphincter with anterogradely transported WGA-HRP. Brain Res 424:216–224

    Article  CAS  PubMed  Google Scholar 

  • Dutsch M, Eichhom U, Worl J, Wank M, Berthound HR, Neububer WL(1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398:289–307

    Article  CAS  PubMed  Google Scholar 

  • Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377

    Article  CAS  PubMed  Google Scholar 

  • Jarlebark LE, Housley GD, Thorne PR (2000) Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J Comp Neurol 421:289–301

    Article  CAS  PubMed  Google Scholar 

  • Keynes RJ, Cook GMW (1995) Repulsive and inhibitory signals. Curr Opin Neurobiol 5:75–82

    Article  CAS  PubMed  Google Scholar 

  • Li ZS, Furness JB (1998) Immunohistochemical localization of cholinergic markers in putative intrinsic primary afferent neurones of the guinea-pig small intestine. Cell Tissue Res 204:35–43

    Article  Google Scholar 

  • Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20:243–255

    Article  CAS  PubMed  Google Scholar 

  • Nikolic P, Housley GD, Luo L, Ryan AF, Thorne PR (2001) Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea. Brain Res Dev Brain Res 126:173–182

    Article  CAS  PubMed  Google Scholar 

  • Oglesby IB, Lachnit WG, Burnstock G, Ford APDW (1999) Subunit specificity of polyclonal antisera to the carboxy terminal regions of P2X receptors P2X1 through P2X7. Drug Dev Res 47:189–195

    Article  CAS  Google Scholar 

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Revs 34:1–26

    Article  CAS  Google Scholar 

  • Phillips RJ, Baronowsky EA, Powley TL (2000) Regenerating vagal afferents reinnervate gastrointestinal tract smooth muscle of the rat. J Comp Neurol 421:325–346

    Article  CAS  PubMed  Google Scholar 

  • Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101:39–47

    Article  CAS  PubMed  Google Scholar 

  • Powley TL, Holst MC, Boyd DB, Kelly JB (1994) Three-dimensional reconstructions of autonomic projections to the gastrointestinal tract. Microsc Res Tech 29:297–309

    CAS  PubMed  Google Scholar 

  • Quinson N, Robbins HL, Clark MJ, Furness JB (2001) Calbindin immunoreactivity of enteric neurones in the guinea-pig ileum. Cell Tissue Res 305:3–9

    Article  CAS  PubMed  Google Scholar 

  • Rehder V, Jensen JR, Kater SB (1992) The initial stages of neural regeneration are dependent upon intracellular calcium levels. Neuroscience 51:565–574

    Article  CAS  PubMed  Google Scholar 

  • Schindelholz B, Reber BF (2000) L-type Ca2+ channels and purinergic P2X2 cation channels participate in calcium-tyrosine kinase-mediated PC12 growth cone arrest. Eur J Neurosci 12:194–204

    Article  CAS  PubMed  Google Scholar 

  • Schwab ME, Kapfhammer JP, Bandtlow CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16:565–595

    Article  CAS  PubMed  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Timmermans JP, Adriaensen D, Lefebvre R (1999) Postnatal development of nitrergic neurons in the myenteric plexus of rat stomach. Histochem Cell Biol 111:429–434

    Article  CAS  PubMed  Google Scholar 

  • Van Nassauw L, Brouns I, Adriaensen D, Burnstock G, Timmermans JP (2002) Neurochemical identification of enteric neurones expressing P2X3 receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203

    PubMed  Google Scholar 

  • Wang FB, Powley TL (2000) Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421:302–324

    Article  CAS  PubMed  Google Scholar 

  • Wynn G, Rong W, Xiang Z, Burnstock G (2003) Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 125:1398–1409

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Bo X, Burnstock G (1998a) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Bo X, Oglesby IB, Ford APWD, Burnstock G (1998b) Localization of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamus. Brain Res 813:390–397

    Article  CAS  PubMed  Google Scholar 

  • Zagorodnyuk VP, Brookes SJH (2000) Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 20:249–255

    Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJH (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea pig stomach. J Physiol 534:255–268

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chrystalla Orphanides for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z., Burnstock, G. Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122, 111–119 (2004). https://doi.org/10.1007/s00418-004-0680-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0680-2

Keywords

Navigation