Skip to main content
Log in

Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The kidney is the most complex organ within the urogenital system. The adult mouse kidney contains in excess of 8,000 mature nephrons, each of which can be subdivided into a renal corpuscle and 14 distinct tubular segments. The histological complexity of this organ can make the clarification of the site of gene expression by in situ hybridisation difficult. We have defined a panel of seven antibodies capable of identifying the six stages of early nephron development, the tubular nephron segments and the components of the renal corpuscle within the embryonic and adult mouse kidney. We have analysed in detail the protein expression of Wt1, Calb1 Aqp1, Aqp2 and Umod using these antibodies. We have then coupled immunohistochemistry with RNA in situ hybridisation in order to precisely identify the expression pattern of different genes, including Wnt4, Umod and Spp1. This technique will be invaluable for examining at high resolution, the structure of both the developing and mature nephron where standard in situ hybridisation and histological techniques are insufficient. The use of this technique will enhance the expression analyses of genes which may be involved in nephron formation and the function of the mature nephron in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JBL (1992) The expression of the Wilms’ tumor gene, WT-1, in the developing mammalian embryo. Mech Dev 40:85–97

    Article  Google Scholar 

  • Campean V, Kricke J, Ellison D, Luft FC, Bachmann S (2001) Localization of thiazide-sensitive Na+–CL- cotransport and associated gene product in mouse DCT. Am J Physiol Renal Physiol 281:1028–1035

    Google Scholar 

  • Cebrián C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231(3):601–608

    Article  PubMed  Google Scholar 

  • Charles AK, Mall S, Watson J, Berry PJ (1997) Expression of the Wilms’ tumour gene WT, 1 in the developing human and in paediatric renal tumours: an immunohistochemical study. Clin Pathol Mol Pathol 50(3):138–144

    Article  CAS  Google Scholar 

  • Davies J (1994) Control of calbindin-D28K expression in developing mouse kidney. Dev Dyn 199(1):45–51

    PubMed  CAS  Google Scholar 

  • Fenton RA, Brond L, Nielsen S, Praetorius J (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol 293:748–760

    Article  CAS  Google Scholar 

  • Fushimi K, Uchida S, Harat Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  PubMed  CAS  Google Scholar 

  • Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310(2):379–387

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  PubMed  CAS  Google Scholar 

  • Johkura K, Usuda N, Liang Y, Nakazawa A (1998) Immunohistochemical localization of peroxisomal enzymes in developing rat kidney tissues. J Histochem Cytochem 46:1161–1174

    PubMed  CAS  Google Scholar 

  • Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Kim WY, Jung JH, Park EY, Yang CW, Kim H, Nielsen S, Madsen KM, Kim J (2006) Expression of protein kinase C isoenzymes alpha, betaI, and delta in subtypes of intercalated cells of mouse kidney. Am J Physiol Renal Physiol 291(5):1052–1060

    Article  CAS  Google Scholar 

  • Kleinman JG, Beshensky A, Worcester EM, Brown D (1995) Expression of osteopontin, a urinary inhibitor of stone mineral crystal growth, in a rat kidney. Kidney Int 47(6):1585–1596

    Article  PubMed  CAS  Google Scholar 

  • Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268(20):15180–15184

    PubMed  CAS  Google Scholar 

  • Kumar S, Muchmore A (1990) Tamm-Horsfall protein-uromodulin (1950–1990). Kidney In 37(6):1395–1401

    Article  CAS  Google Scholar 

  • Larsson L (1975) The ultrastructure of the developing proximal tubule in the rat kidney. J Ultrastruct Res 51:119–139

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Maunsbach AB (1980) The ultrastructural development of the glomerular filtration barrier in the rat kidney: a morphometric analysis. J Ultrastruct Res 2:392–406

    Article  Google Scholar 

  • Lopez CA, Hoyer JR, Wilson PD, Waterhouse P, Denhardt DT (1993) Heterogeneity of osteopontin expression among nephrons in mouse kidneys and enhanced expression in sclerotic glomeruli. Lab Invest 69(3):355–363

    PubMed  CAS  Google Scholar 

  • Little M, Brennan J, Georgas K, Davies J, Davidson D, Baldock R, Beverdam A, Bertram J, Capel B, Clements D, Cullen-McEwen L, Fleming J, Gilbert T, Herzlinger D, Houghton D, Kaufman M, Kleymenova E, Koopman P, Kris W, Lewis A, McMahon A, Mendelsohn C, Mitchell E, Saunders P, Spencer T, Sweeney D, Thomson A, Tindal C, Valerius MT, Yamada G, Yang Y, Yu J (2006) A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Exp Pat 7:680–699

    Article  CAS  Google Scholar 

  • Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Herbert SC, Rossier BC, Hoenderop JGJ, Bindels RJM, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:1021–1027

    Google Scholar 

  • Madsen KM, Zhang L, Abu Shamat AR, Siegfried S, Cha JH (1997) Ultrastructural localization of osteopontin in the kidney: induction by lipopolysaccharide. J Am Soc Nephrol 8(7):1043–1053

    PubMed  CAS  Google Scholar 

  • Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR (2004) Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, Zabel B (1993) Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 119:1329–1341

    PubMed  CAS  Google Scholar 

  • Nielsen S, Digiovanni SR, Christensen EI, Knepper MA, Harris HW (1993a) Cellular and subcellular immunolocalization of vasopressinregulated water channel in rat kidney. Proc Natl Acad Sci 90:11663–11667

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P (1993b) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. JCB 120:371–383

    Article  CAS  Google Scholar 

  • Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268 (Renal Fluid Electrolyte Physiol) 37:1023–1037

    Google Scholar 

  • Nomura S, Wills AJ, Edwards DR, Heath JK, Hogan BL (1998) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol 106:441–450

    Article  Google Scholar 

  • Pichler R, Giachelli CM, Lombardi D, Pippin J, Gordon K, Alpers CE, Schwartz SM, Johnson RJ (1994) Tubulointerstitial disease in glomerulonephritis. Potential role of osteopontin (uropontin). Am J Pathol 144(5):915–926

    PubMed  CAS  Google Scholar 

  • Pitera JE, Woolf AS, Gale NW, Yancopoulos JD, Yuan HT (2004) Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2-deficient mice. Am J Pathol 165:1895–1906

    PubMed  CAS  Google Scholar 

  • Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D, van Heyningen V, Hastie N (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197

    Article  PubMed  CAS  Google Scholar 

  • Rackley RR, Flenniken AM, Kuriyan NP, Kessler PM, Stoler MH, Williams BR (1993) Expression of the Wilms’ tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ 4(12):1023–1031

    PubMed  CAS  Google Scholar 

  • Reeves W, Caulfield JP, Farquhar MG (1978) Differentiation of epithelial foot processes and filtration slits. Sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab Invest 39:90–100

    PubMed  CAS  Google Scholar 

  • Rhoten WB, Bruns ME, Christakos S (1985) Presence and localization of two vitamin D-dependent calcium binding proteins in kidney and higher vertebrates. Endocrinology 117:674–683

    Article  PubMed  CAS  Google Scholar 

  • Ruotsalainen V, Patrakka J, Tissari P, Reponen P, Hess M, Kestilä M, Holmberg C, Salonen R, Heikinheimo M, Wartiovaara J, Tryggvason K, Jalanko H (2000) Role of nephrin in cell junction formation in human nephrogenesis. Am J Pathol 157(6):1905–1916

    PubMed  CAS  Google Scholar 

  • Sabolic I, Valenti G, Verbavatz JM, Van Hoek AN, Verkman AS, Ausiello DA, Brown D (1992) Localization of the CHIP28 water channel in rat kidney. Am J Physiol Cell Physiol 263(6):1225–1233

    Google Scholar 

  • Scharnhorst V, van der Eb AJ, Jochemsen AG (2001) WT1 proteins: functions in growth and differentiation. GENE 273(2):141–161

    Article  PubMed  CAS  Google Scholar 

  • Schnabel E, Anderson JM, Farquhar MG (2000) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. JCB 111:1255–1263

    Article  Google Scholar 

  • Shamley DR, Opperman LA, Buffenstein R, Ross FP (1992) Ontogeny of calbindin-D28K and calbindin-D9K in the mouse kidney, duodenum, cerebellum and placenta. Development 116(2):491–496

    PubMed  CAS  Google Scholar 

  • Sikri KL, Foster CL, Bloomfield FJ, Marshall RD (1979) Localization by osteopontin kidney nomura 1998 immunofluorescence and by light- and electron-microscopic immunoperoxidase techniques of Tamm–Horsfall glycoprotein in adult hamster kidney. Biochem J 181:525–538

    PubMed  CAS  Google Scholar 

  • Smith BL, Baumgarten R, Nielsen S, Raben D, Zeidel ML, Agre P (1993) Concurrent expression of erythroid and renal aquaporin CHIP and appearance of water channel activity in perinatal rats. J Clin Invest 92:2035–2041

    Article  PubMed  CAS  Google Scholar 

  • Takemoto M, He L, Norlin J, Patrakka J, Xiao Z, Petrova T, Bondjers C, Asp J, Wallgard E, Sun Y, Samuelsson T, Mostad P, Lundin S, Miura S, Sado Y, Alitalo K, Quaggin SE, Tryggvason K, Betsholtz C (2006) Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J 25(5):1160–1174

    Article  PubMed  CAS  Google Scholar 

  • Yeger H, Forget D, Alami J, Williams BR (1996) Analysis of WT1 gene expression during mouse nephrogenesis in organ culture. In Vitro Cell Dev Biol Anim 32(8):496–504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Darrin Taylor and Sean Grimmond for technical advice and assistance in designing the primers for the mRNA riboprobes. Images and annotated protein expression patterns using these antibodies are available on the GUDMAP gene expression database (http://www.gudmap.org). We would like to thank the Edinburgh GUDMAP Editorial Office. This work was supported by the National Institute of Diabetes Digestion and Kidney Diseases, National Institutes of Health, USA (DK070136-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa H. Little.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgas, K., Rumballe, B., Wilkinson, L. et al. Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney. Histochem Cell Biol 130, 927–942 (2008). https://doi.org/10.1007/s00418-008-0454-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0454-3

Keywords

Navigation