Skip to main content

Advertisement

Log in

Expression analysis of mouse Rhobtb3 using a LacZ reporter and preliminary characterization of a knockout strain

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

RhoBTB3 is an atypical member of the Rho family of small GTPases. It localizes at the Golgi apparatus and endosomes and is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. Previous studies using Northern blot analysis showed that Rhobtb3 is ubiquitously expressed in adult mice, but expression is particularly high in brain, heart and uterus. The gene is also expressed between embryonic days 11.5 and 17.5. To investigate the specific cell types that express this gene across tissues, both in the embryo and in the adult organism, we have made use of a gene trap mouse strain that expresses the LacZ gene under the transcriptional control of the endogenous Rhobtb3 promoter. Histochemical detection of β-galactosidase expression revealed a profile characterized by nearly ubiquitous expression of Rhobtb3 in the embryo, but with particularly high levels in bone, cartilage, all types of muscle, testis and restricted areas of the nervous system. In the adult, expression persists at much lower levels in cardiac muscle, the tunica media of blood vessels and cartilage and at high levels in the seminiferous tubules. A general preliminary characterization of this gene trap mouse strain revealed reduced viability, a postnatal growth defect and reduced testis size. Our results should pave the way for future studies aimed at investigating the roles of RhoBTB3 in tissue development and in cardiac, vascular and testicular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adell MA, Teis D (2011) Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Lett 585:3191–3196

    Article  PubMed  Google Scholar 

  • Berthold J, Schenková K, Ramos S, Miura Y, Furukawa M, Aspenström P, Rivero F (2008a) Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes-Evidence for an autoregulatory mechanism. Exp Cell Res 314:3453–3465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berthold J, Schenková K, Rivero F (2008b) Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol Sin 29:285–295

    Article  PubMed  CAS  Google Scholar 

  • Caspi E, Rosin-Arbesfeld R (2008) A novel functional screen in human cells identifies MOCA as a negative regulator of Wnt signaling. Mol Biol Cell 19:4660–4674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen F, Ma L, Parrini MC, Mao X, Lopez M, Wu C, Marks PW, Davidson L, Kwiatkowski DJ, Kirchhausen T, Orkin SH, Rosen FS, Mayer BJ, Kirschner MW, Alt FW (2000) Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol 10:758–765

    Article  PubMed  CAS  Google Scholar 

  • Debrand E, Conti FJ, Bate N, Spence L, Mazzeo D, Pritchard CA, Monkley SJ, Critchley DR (2012) Mice carrying a complete deletion of the talin2 coding sequence are viable and fertile. Biochem Biophys Res Commun 426:190–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Espinosa EJ, Calero M, Sridevi K, Pfeffer SR (2009) RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137:938–948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fevr T, Robine S, Louvard D, Huelsken J (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27:7551–7559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freeman SN, Ma Y, Cress WD (2008) RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J Biol Chem 283:2353–2362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grimm-Günter EM, Revenu C, Ramos S, Hurbain I, Smyth N, Ferrary E, Louvard D, Robine S, Rivero F (2009) Plastin 1 binds to keratin and is required for the terminal web assembly in the intestinal epithelium. Mol Biol Cell 20:2549–2562

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall A (2012) Rho family GTPases. Biochem Soc Trans 40:1378–1382

    Article  PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  PubMed  CAS  Google Scholar 

  • Heckel T, Czupalla C, Expirto Santo AI, Anitei M, Arantzazu Sánchez-Fernandez M, Mosch K, Krause E, Hoflack B (2009) Src-dependent repression of ARF6 is required to maintain podosome-rich sealing zones in bone-digesting osteoclasts. Proc Natl Acad Sci USA 106:1451–1456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herzog D, Loetscher P, van Hengel J, Knusel S, Brakebusch C, Taylor V, Suter U, Relvas JB (2011) The small GTPase RhoA is required to maintain spinal cord neuroepithelium organization and the neural stem cell pool. J Neurosci 31:5120–5130

    Article  PubMed  CAS  Google Scholar 

  • Ling LJ, Lu C, Zhou GP, Wang S (2010) Ectopic expression of RhoBTB2 inhibits migration and invasion of human breast cancer cells. Cancer Biol Ther 10:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Pfeffer SR (2013) Golgi-associated RhoBTB3 targets Cyclin E for ubiquitylation and promotes cell cycle progression. J Cell Biol 203:233–250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mao H, Zhang L, Yang Y, Sun J, Deng B, Feng J, Shao Q, Feng A, Song B, Qu X (2011) RhoBTB2 (DBC2) functions as tumor suppressor via inhibiting proliferation, preventing colony formation and inducing apoptosis in breast cancer cells. Gene 486:74–80

    Article  PubMed  CAS  Google Scholar 

  • Matthys A, Van Craenenbroeck K, Lintermans B, Haegeman G, Vanhoenacker P (2012) RhoBTB3 interacts with the 5-HT7a receptor and inhibits its proteasomal degradation. Cell Signal 24:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • McKinnon CM, Lygoe KA, Skelton L, Mitter R, Mellor H (2008) The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene 27:6856–6865

    Article  PubMed  CAS  Google Scholar 

  • Mocholi E, Ballester-Lurbe B, Arque G, Poch E, Peris B, Guerri C, Dierssen M, Guasch RM, Terrado J, Perez-Roger I (2011) RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice. PLoS ONE 6:e19236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ory S, Brazier H, Pawlak G, Blangy A (2008) Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 87:469–477

    Article  PubMed  CAS  Google Scholar 

  • Pedersen E, Brakebusch C (2012) Rho GTPase function in development: how in vivo models change our view. Exp Cell Res 318:1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA (2009) The stem cells of small intestinal crypts: where are they? Cell Prolif 42:731–750

    Article  PubMed  CAS  Google Scholar 

  • Ramos S, Khademi F, Somesh BP, Rivero F (2002) Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 298:147–157

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  PubMed  CAS  Google Scholar 

  • Rivero F, Dislich H, Glockner G, Noegel AA (2001) The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res 29:1068–1079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Savalas LR, Gasnier B, Damme M, Lübke T, Wrocklage C, Debacker C, Jézégou A, Reinheckel T, Hasilik A, Saftig P, Schröder B (2011) Disrupted in renal carcinoma 2 (DIRC2), a novel transporter of the lysosomal membrane, is proteolytically processed by cathepsin L. Biochem J 439:113–128

    Article  PubMed  CAS  Google Scholar 

  • Schenková K, Lutz J, Kopp M, Ramos S, Rivero F (2012) MUF1/leucine-rich repeat containing 41 (LRRC41), a substrate of RhoBTB-dependent cullin 3 ubiquitin ligase complexes, is a predominantly nuclear dimeric protein. J Mol Biol 422:659–673

    Article  PubMed  Google Scholar 

  • Segditsas S, Sieber O, Deheragoda M, East P, Rowan A, Jeffery R, Nye E, Clark S, Spencer-Dene B, Stamp G, Poulsom R, Suraweera N, Silver A, Ilyas M, Tomlinson I (2008) Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Hum Mol Genet 17:3864–3875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Siripurapu V, Meth J, Kobayashi N, Hamaguchi M (2005) DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J Mol Biol 346:83–89

    Article  PubMed  CAS  Google Scholar 

  • Walmsley MJ, Ooi SK, Reynolds LF, Smith SH, Ruf S, Mathiot A, Vanes L, Williams DA, Cancro MP, Tybulewicz VL (2003) Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302:459–462

    Article  PubMed  CAS  Google Scholar 

  • Wennerberg K, Der C (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Wilkins A, Ping Q, Carpenter CL (2004) RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev 18:856–861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshihara T, Collado D, Hamaguchi M (2007) Cyclin D1 downregulation is essential for DBC2′s tumor suppressor function. Biochem Biophys Res Commun 358:1076–1079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang M, Kass DA (2011) Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci 32:360–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao H, Ettala O, Vaananen HK (2002) Intracellular membrane trafficking pathways in bone-resorbing osteoclasts revealed by cloning and subcellular localization studies of small GTP-binding rab proteins. Biochem Biophys Res Commun 293:1060–1065

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant of the Hull York Medical School to FR. Julia Lutz and Pooja Joshi are recipients of University of Hull PhD studentships. We are thankful to Dr. Ludwig Eichinger for support with processing of the microarray data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Rivero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutz, J., Grimm-Günter, EM.S., Joshi, P. et al. Expression analysis of mouse Rhobtb3 using a LacZ reporter and preliminary characterization of a knockout strain. Histochem Cell Biol 142, 511–528 (2014). https://doi.org/10.1007/s00418-014-1235-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1235-9

Keywords

Navigation