Skip to main content

Advertisement

Log in

Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The generation of elastic cartilage substitutes for clinical use is still a challenge. In this study, we investigated the possibility of encapsulating human elastic cartilage-derived chondrocytes (HECDC) in biodegradable nanostructured fibrin-agarose hydrogels (NFAH). Viable HECDC from passage 2 were encapsulated in NFAH and maintained in culture conditions. Constructs were harvested for histochemical and immunohistochemical analyses after 1, 2, 3, 4 and 5 weeks of development ex vivo. Histological results demonstrated that it is possible to encapsulate HECDC in NFAH, and that HECDC were able to proliferate and form cells clusters expressing S-100 and vimentin. Additionally, histochemical and immunohistochemical analyses of the extracellular matrix (ECM) showed that HECDC synthetized different ECM molecules (type I and II collagen, elastic fibers and proteoglycans) in the NFAH ex vivo. In conclusion, this study suggests that NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications. However, further cell differentiation, biomechanical and in vivo studies are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz-Avila JI, Serrano D, Medialdea S, Carreras I, Campos A (2006) Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci 47(8):3311–3317. doi:10.1167/iovs.05-1647

    Article  PubMed  Google Scholar 

  • Alfonso-Rodriguez CA, Garzon I, Garrido-Gomez J, Oliveira AC, Martin-Piedra MA, Scionti G, Carriel V, Hernandez-Cortes P, Campos A, Alaminos M (2014) Identification of histological patterns in clinically affected and unaffected palm regions in dupuytren’s disease. PLoS ONE 9(11):e112457. doi:10.1371/journal.pone.0112457

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbero A, Grogan S, Schafer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc 12(6):476–484. doi:10.1016/j.joca.2004.02.010

    Article  Google Scholar 

  • Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2015) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 84:107–122. doi:10.1016/j.addr.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  • Brent B (1999) Technical advances in ear reconstruction with autogenous rib cartilage grafts: personal experience with 1200 cases. Plast Reconstr Surg 104(2):319–334

    Article  CAS  PubMed  Google Scholar 

  • Carriel V, Garzon I, Jimenez JM, Oliveira AC, Arias-Santiago S, Campos A, Sanchez-Quevedo MC, Alaminos M (2012) Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs 196(1):1–12. doi:10.1159/000330682

    CAS  PubMed  Google Scholar 

  • Carriel V, Garrido-Gomez J, Hernandez-Cortes P, Garzon I, Garcia-Garcia S, Saez-Moreno JA, Del Carmen Sanchez-Quevedo M, Campos A, Alaminos M (2013) Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 10(2):026022. doi:10.1088/1741-2560/10/2/026022

    Article  PubMed  Google Scholar 

  • Carriel V, Alaminos M, Garzon I, Campos A, Cornelissen M (2014a) Tissue engineering of the peripheral nervous system. Expert Rev Neurother 14(3):301–318. doi:10.1586/14737175.2014.887444

    Article  CAS  PubMed  Google Scholar 

  • Carriel V, Garzon I, Alaminos M, Cornelissen M (2014b) Histological assessment in peripheral nerve tissue engineering. Neural Regen Res 9(18):1657–1660. doi:10.4103/1673-5374.141798

    Article  PubMed  PubMed Central  Google Scholar 

  • Carriel V, Garzon I, Campos A, Cornelissen M, Alaminos M (2014c) Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits. J Tissue Eng Regen Med. doi:10.1002/term.1949

    PubMed  Google Scholar 

  • Carriel V, Scionti G, Campos F, Roda O, Castro B, Cornelissen M, Garzon I, Alaminos M (2015) In vitro characterization of a nanostructured fibrin agarose bio-artificial nerve substitute. J Tissue Eng Regen Med. doi:10.1002/term.2039

    PubMed  Google Scholar 

  • Chang SC, Tobias G, Roy AK, Vacanti CA, Bonassar LJ (2003) Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plast Reconstr Surg 112(3):793–799. doi:10.1097/01.PRS.0000069711.31021.94

    Article  PubMed  Google Scholar 

  • Cheema U, Brown RA (2013) Rapid fabrication of living tissue models by collagen plastic compression: understanding three-dimensional cell matrix repair. Adv Wound Care (New Rochelle) 2(4):176–184. doi:10.1089/wound.2012.0392

    Article  Google Scholar 

  • Garcia-Lopez J, Garciadiego-Cazares D, Melgarejo-Ramirez Y, Sanchez-Sanchez R, Solis-Arrieta L, Garcia-Carvajal Z, Sanchez-Betancourt JI, Ibarra C, Luna-Barcenas G, Velasquillo C (2015) Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel. Histol Histopathol 30(12):1477–1485. doi:10.14670/HH-11-642

    CAS  PubMed  Google Scholar 

  • Garzon I, Serrato D, Roda O, Del Carmen Sanchez-Quevedo M, Gonzales-Jaranay M, Moreu G, Nieto-Aguilar R, Alaminos M, Campos A (2009) In vitro cytokeratin expression profiling of human oral mucosa substitutes developed by tissue engineering. Int J Artif Organs 32(10):711–719

    CAS  PubMed  Google Scholar 

  • Garzon I, Carriel V, Marin-Fernandez AB, Oliveira AC, Garrido-Gomez J, Campos A, del Carmen Sanchez-Quevedo M, Alaminos M (2012a) A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering. PLoS ONE 7(12):e51961. doi:10.1371/journal.pone.0051961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon I, Perez-Kohler B, Garrido-Gomez J, Carriel V, Nieto-Aguilar R, Martin-Piedra MA, Garcia-Honduvilla N, Bujan J, Campos A, Alaminos M (2012b) Evaluation of the cell viability of human Wharton’s jelly stem cells for use in cell therapy. Tissue Eng Part C Methods 18(6):408–419. doi:10.1089/ten.TEC.2011.0508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon I, Alfonso-Rodriguez CA, Martinez-Gomez C, Carriel V, Martin-Piedra MA, Fernandez-Valades R, Sanchez-Quevedo MC, Alaminos M (2014a) Expression of epithelial markers by human umbilical cord stem cells. Topogr Anal Placent 35(12):994–1000. doi:10.1016/j.placenta.2014.09.007

    CAS  Google Scholar 

  • Garzon I, Martin-Piedra MA, Alfonso-Rodriguez C, Gonzalez-Andrades M, Carriel V, Martinez-Gomez C, Campos A, Alaminos M (2014b) Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci 55(7):4073–4083. doi:10.1167/iovs.14-14304

    Article  PubMed  Google Scholar 

  • Gaut C, Sugaya K (2015) Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Regen Med 10(5):1–15. doi:10.2217/rme.15.31

    Article  Google Scholar 

  • Gentili C, Cancedda R (2009) Cartilage and bone extracellular matrix. Curr Pharm Des 15(12):1334–1348

    Article  CAS  PubMed  Google Scholar 

  • Giachini FR, Carriel V, Capelo LP, Tostes RC, Carvalho MH, Fortes ZB, Zorn TM, San Martin S (2008) Maternal diabetes affects specific extracellular matrix components during placentation. J Anat 212(1):31–41. doi:10.1111/j.1469-7580.2007.00839.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes AJ, Hall A, Brown L, Tubo R, Caterson B (2007) Macromolecular organization and in vitro growth characteristics of scaffold-free neocartilage grafts. J Histochem Cytochem Off J Histochem Soc 55(8):853–866. doi:10.1369/jhc.7A7210.2007

    Article  CAS  Google Scholar 

  • Hsiao HT, Leu YS, Tung KY (2010) Epiglottis reconstruction with free radial forearm flap after supraglottic laryngectomy. Am J Otolaryngol 31(2):132–135. doi:10.1016/j.amjoto.2008.11.004

    Article  PubMed  Google Scholar 

  • Ionescu AM, Alaminos M, de la Cruz Cardona J, de DiosGarcia-LopezDuran J, Gonzalez-Andrades M, Ghinea R, Campos A, Hita E, del Mar Perez M (2011) Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties. J Mech Behav Biomed Mater 4(8):1963–1973. doi:10.1016/j.jmbbm.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  • Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267

    Article  CAS  PubMed  Google Scholar 

  • Kessler MW, Grande DA (2008) Tissue engineering and cartilage. Organogenesis 4(1):28–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB (2002) Structure and function of aggrecan. Cell Res 12(1):19–32. doi:10.1038/sj.cr.7290106

    Article  PubMed  Google Scholar 

  • Kreis T, Vale R (1999) Guidebook to the extracellular matrix, anchor, and adhesion proteins, 2nd edn. Oxford University Press, Oxford England, New York

    Google Scholar 

  • Kuo CY, Huang BR, Chen HC, Shih CP, Chang WK, Tsai YL, Lin YY, Tsai WC, Wang CH (2015) Surgical results of retrograde mastoidectomy with primary reconstruction of the ear canal and mastoid cavity. Biomed Res Int 2015:517035. doi:10.1155/2015/517035

    PubMed  PubMed Central  Google Scholar 

  • Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, Lowder E, Landis WJ (2009) Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 17(1):136–146. doi:10.1111/j.1524-475X.2008.00451.x

    Article  PubMed  Google Scholar 

  • Leonardi R, Villari L, Bernasconi G, Piacentini C, Baciliero U, Travali S (2000) Cellular S-100 protein immunostaining in human dysfunctional temporomandibular joint discs. Arch Oral Biol 45(5):411–418

    Article  CAS  PubMed  Google Scholar 

  • Li KC, Hu YC (2015) Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 4(7):948–968. doi:10.1002/adhm.201400773

    Article  CAS  PubMed  Google Scholar 

  • Liao HT, Zheng R, Liu W, Zhang WJ, Cao Y, Zhou G (2015) Prefabricated, ear-shaped cartilage tissue engineering by scaffold-free porcine chondrocyte membrane. Plast Reconstr Surg 135(2):313e–321e. doi:10.1097/PRS.0000000000001105

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang L, Zhou G, Li Q, Liu W, Yu Z, Luo X, Jiang T, Zhang W, Cao Y (2010) In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 31(8):2176–2183. doi:10.1016/j.biomaterials.2009.11.080

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lopez MT, Scionti G, Oliveira AC, Duran JD, Campos A, Alaminos M, Rodriguez IA (2015) Generation and characterization of novel magnetic field-responsive biomaterials. PLoS ONE 10(7):e0133878. doi:10.1371/journal.pone.0133878

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F (2012) Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 11(21):3956–3963. doi:10.4161/cc.22136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Sanchez-Quevedo MC, Campos A, Alaminos M (2013) Average cell viability levels of human dental pulp stem cells: an accurate combinatorial index for quality control in tissue engineering. Cytotherapy 15(4):507–518. doi:10.1016/j.jcyt.2012.11.017

    Article  CAS  PubMed  Google Scholar 

  • Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Carriel V, Scionti G, Alaminos M (2014) Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy 16(2):266–277. doi:10.1016/j.jcyt.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Kamiya N, Suwan K, Atsumi F, Shimizu K, Shinomura T, Yamada Y, Kimata K, Watanabe H (2006) Identification and characterization of versican/PG-M aggregates in cartilage. J Biol Chem 281(26):18257–18263. doi:10.1074/jbc.M510330200

    Article  CAS  PubMed  Google Scholar 

  • Mills SE (2012) Histology for pathologists, 4th edn. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia

    Google Scholar 

  • Nayyer L, Patel KH, Esmaeili A, Rippel RA, Birchall M, O’Toole G, Butler PE, Seifalian AM (2012) Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg 129(5):1123–1137. doi:10.1097/PRS.0b013e31824a2c1c

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JT, Reis RL (2011) Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 5(6):421–436. doi:10.1002/term.335

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JT, Crawford A, Mundy JM, Moreira AR, Gomes ME, Hatton PV, Reis RL (2007) A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J Mater Sci Mater Med 18(2):295–302. doi:10.1007/s10856-006-0692-7

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AC, Garzon I, Ionescu AM, Carriel V, Cardona Jde L, Gonzalez-Andrades M, Perez Mdel M, Alaminos M, Campos A (2013) Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS ONE 8(6):e66538. doi:10.1371/journal.pone.0066538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappa AK, Caballero M, Dennis RG, Skancke MD, Narayan RJ, Dahl JP, van Aalst JA (2014) Biochemical properties of tissue-engineered cartilage. J craniofac surg 25(1):111–115. doi:10.1097/SCS.0b013e3182a2eb56

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren G, Crampton MS, Yap AS (2009) Cortactin: coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton 66(10):865–873. doi:10.1002/cm.20380

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MA, Lopez-Lopez MT, Duran JD, Alaminos M, Campos A, Rodriguez IA (2013) Cryopreservation of an artificial human oral mucosa stroma. A viability and rheological study. Cryobiology 67(3):355–362. doi:10.1016/j.cryobiol.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Arco L, Rodriguez IA, Carriel V, Bonhome-Espinosa AB, Campos F, Kuzhir P, Duran JD, Lopez-Lopez MT (2016) Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale 8(15):8138–8150. doi:10.1039/c6nr00224b

    Article  CAS  PubMed  Google Scholar 

  • Roughley PJ (2006) The structure and function of cartilage proteoglycans. Eur Cell Mater 12:92–101

    Article  CAS  PubMed  Google Scholar 

  • San Martin S, Alaminos M, Zorn TM, Sanchez-Quevedo MC, Garzon I, Rodriguez IA, Campos A (2013) The effects of fibrin and fibrin-agarose on the extracellular matrix profile of bioengineered oral mucosa. J Tissue Eng Regen Med 7(1):10–19. doi:10.1002/term.490

    Article  CAS  PubMed  Google Scholar 

  • Scionti G, Moral M, Toledano M, Osorio R, Duran JD, Alaminos M, Campos A, Lopez-Lopez MT (2014) Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model. J Biomed Mater Res A 102(8):2573–2582. doi:10.1002/jbm.a.34929

    Article  PubMed  Google Scholar 

  • Silva JM, Georgi N, Costa R, Sher P, Reis RL, Van Blitterswijk CA, Karperien M, Mano JF (2013) Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering. PLoS ONE 8(2):e55451. doi:10.1371/journal.pone.0055451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MC, Hung KC, Hung SC, Hsu SH (2015) Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf B Biointerfaces 125:34–44. doi:10.1016/j.colsurfb.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  • Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623

    Article  CAS  PubMed  Google Scholar 

  • Wu JZ, Herzog W (2002) Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes. J Biomech 35(7):931–942

    Article  CAS  PubMed  Google Scholar 

  • Yammani RR (2012) S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta 1822(4):600–606. doi:10.1016/j.bbadis.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanaga H, Imai K, Koga M, Yanaga K (2012) Cell-engineered human elastic chondrocytes regenerate natural scaffold in vitro and neocartilage with neoperichondrium in the human body post-transplantation. Tissue Eng Part A 18(19–20):2020–2029. doi:10.1089/ten.TEA.2011.0370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Bichara DA, Zhou L, Kulig KM, Tseng A, Bowley CM, Vacanti JP, Pomerantseva I, Sundback CA, Randolph MA (2015) Conditions for seeding and promoting neo-auricular cartilage formation in a fibrous collagen scaffold. J Craniomaxillofac Surg 43(3):382–389. doi:10.1016/j.jcms.2014.12.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundación Pública Andaluza Progreso y Salud, Consejería de Salud, Junta de Andalucía, España, Grant PI-0653-2013. The authors thank K. Shashok for assistance with the English in the manuscript. In addition, Prof. Víctor Carriel is grateful to “Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), programa de Becas Chile, del Gobierno de Chile”. This work forms part of the doctoral thesis by Laura García-Martínez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Carriel.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Martínez, L., Campos, F., Godoy-Guzmán, C. et al. Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol 147, 83–95 (2017). https://doi.org/10.1007/s00418-016-1485-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1485-9

Keywords

Navigation