Skip to main content
Log in

Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reddy J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC, Boca Raton (2004)

    MATH  Google Scholar 

  2. Soldatos K., Elishakoff I.: A transverse shear and normal deformable orthotropic beam theory. J.Sound Vib. 155(3), 528–533 (1992)

    Article  MATH  Google Scholar 

  3. Chandrashekhara K., Bangera K.: Free vibration of composite beams using a refined shear flexible beam element. Comput. Struct. 43(4), 719–727 (1992)

    Article  MATH  Google Scholar 

  4. Marur S.R., Kant T.: vibration analysis of fiber reinforced composite beams using higher order theories and finite element modelling. J. Sound Vib. 194(3), 337–351 (1996)

    Article  Google Scholar 

  5. Kant T., Marur S.R., Rao G.S.: Analytical solution to the dynamic analysis of laminated beams using higher order refined theory. Compos. Struct. 40(1), 1–9 (1997)

    Article  Google Scholar 

  6. Marur S.R., Kant T.: A higher order finite element model for the vibration analysis of laminated beams. J. Vib. Acoust. 120(3), 822–824 (1998)

    Article  Google Scholar 

  7. Marur S.R., Kant T.: On the angle ply higher order beam vibrations. Comput. Mech. 40, 25–33 (2007)

    Article  MATH  Google Scholar 

  8. Shi G., Lam K.Y.: Finite element vibration analysis of composite beams based on higher-order beam theory. J. Sound Vib. 219(4), 707–721 (1999)

    Article  Google Scholar 

  9. Murthy M.V.V.S., Mahapatra D.R., Badarinarayana K., Gopalakrishnan S.: A refined higher order finite element for asymmetric composite beams. Compos. Struct. 67(1), 27–35 (2005)

    Article  Google Scholar 

  10. Subramanian P.: Analysis of laminated composite beams using higher order theories and finite elements. Compos. Struct. 73(3), 342–353 (2006)

    Article  Google Scholar 

  11. Jun L., Xiaobin L., Hong xing H.: Free vibration analysis of third-order shear deformable composite beams using dynamic stiffness method. Arch. Appl. Mech. 79, 1083–1098 (2009)

    Article  MATH  Google Scholar 

  12. Jun L., Hong xing H.: Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory. Compos. Struct. 89(3), 433–442 (2009)

    Article  Google Scholar 

  13. Jun L., Hongxing H.: Free vibration analyses of axially loaded laminated composite beams based on higher-order shear deformation theory. Meccanica 46, 1299–1317 (2011)

    Article  MathSciNet  Google Scholar 

  14. Vidal P., Polit O.: A family of sinus finite elements for the analysis of rectangular laminated beams. Compos. Struct. 84(1), 56–72 (2008)

    Article  Google Scholar 

  15. Vidal P., Polit O.: Vibration of multilayered beams using sinus finite elements with transverse normal stress. Compos. Struct. 92(6), 1524–1534 (2010)

    Article  Google Scholar 

  16. Khdeir A.A., Reddy J.N.: Free vibration of cross-ply laminated beams with arbitrary boundary conditions. Int. J. Eng. Sci. 32(12), 1971–1980 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khdeir A.A., Reddy J.N.: Buckling of cross-ply laminated beams with arbitrary boundary conditions. Compos. Struct. 37(1), 1–3 (1997)

    Article  Google Scholar 

  18. Song S.J., Waas A.M.: Effects of shear deformation on buckling and free vibration of laminated composite beams. Compos. Struct. 37(1), 33–43 (1997)

    Article  Google Scholar 

  19. Karama M., Harb B.A., Mistou S., Caperaa S.: Bending , buckling and free vibration of laminated composite with a transverse shear stress continuity model. Compos. B Eng. 29(3), 223–234 (1998)

    Article  Google Scholar 

  20. Karama M., Afaq K.S., Mistou S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–1546 (2003)

    Article  MATH  Google Scholar 

  21. Matsunaga H.: Vibration and buckling of multilayered composite beams according to higher order deformation theories. J. Sound Vib. 246(1), 47–62 (2001)

    Article  MathSciNet  Google Scholar 

  22. Aydogdu M.: Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int. J. Mech. Sci. 47(11), 1740–1755 (2005)

    Article  MATH  Google Scholar 

  23. Aydogdu M.: Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Compos. Sci. Tech. 66(10), 1248–1255 (2006)

    Article  MathSciNet  Google Scholar 

  24. Aydogdu M.: Free vibration analysis of angle-ply laminated beams with general boundary conditions. J. Reinforced Plastics Compos. 25(15), 1571–1583 (2006)

    Article  Google Scholar 

  25. Zhen W., Wanji C.: An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Compos. Struct. 8(4), 337–349 (2008)

    Article  Google Scholar 

  26. Vo T.P., Thai H.T.: Static behaviour of composite beams using various refined shear deformation theories. Compos. Struct. 94(8), 2513–2522 (2012)

    Article  Google Scholar 

  27. Touratier M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  28. Jones R.M.: Mechanics of Composite Materials. Taylor & Francis, London (1999)

    Google Scholar 

  29. Chen W.Q., Lv C.F., Bian Z.G.: Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Compos. Struct. 63(3–4), 417–425 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuc P. Vo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vo, T.P., Thai, HT. & Inam, F. Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory. Arch Appl Mech 83, 605–622 (2013). https://doi.org/10.1007/s00419-012-0707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0707-4

Keywords

Navigation