Skip to main content
Log in

A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness data will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. The newly developed governing equations for SNTT crack growth estimate are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, J.-A., et al.: Using torsional bar testing to determine fracture toughness. Fatigue Fract. Eng. Mater. Struct. J. 23, 917–927 (2000)

    Article  Google Scholar 

  2. Wang, J.-A., Liu, K.: A new approach to evaluate fracture toughness of structural materials. J. Press. Vessel Technol. 126, 534–540 (2004)

    Article  Google Scholar 

  3. Wang, J.-A., et al.: A new approach for evaluating thin film interface fracture toughness. J. Mater. Sci. Eng. A 426, 332–345 (2006)

    Article  Google Scholar 

  4. Wang, J.-A., Kidane, A.: A new approach to determine the quasi-static and dynamic fracture toughness of materials. In: SEM XII International Congress and Exposition on Experimental and Applied Mechanics, Orange County/Costa Mesa, June 11–14 (2012)

  5. Bayles, R., Singh, R., Knight, S., Wang, J.-A.: Evaluating stress-corrosion cracking susceptibility using a torsion test. In: 2005 ASME Pressure Vessel Piping Conference, Denver, Colorado, July 17–21 (2005)

  6. Wang, J.-A.: Oak ridge national laboratory spiral notch torsion test system. J. Pract. Fail. Anal. 3(4), 23 (2003)

    Article  MathSciNet  Google Scholar 

  7. Wang, J.-A., Liu, K.: An innovative technique for evaluating fracture toughness of graphite materials. J. Nucl. Mater. 381, 77–184 (2008)

    Article  Google Scholar 

  8. Wang, J.-A., Liu, K., Naus, D.: A new test method for determining the fracture toughness of concrete materials. J. Cem. Concr. Res. 40, 497–499 (2010)

    Article  Google Scholar 

  9. Tan, T., Ren, F., Wang, J.-A., et al.: Investigating fracture behavior of polymer and polymeric composite materials using spiral notch torsion test. J. Eng. Fract. Mech. 10, 109–128 (2013)

    Article  Google Scholar 

  10. Ren, F., Wang, J.-A., Bertelsen, W.: Fractographic study of epoxy materials fractured under mode I loading and mixed mode I/III loading. Mater. Sci. Eng. A 532, 449–455 (2012)

    Article  Google Scholar 

  11. Bayles, R., King, S., Wang, J.-A.: Application of disc compact tension formulas to compliance and K-calibration of spiral notch torsion test specimens. In: 6th International Aircraft Corrosion Workshop, at the Holiday Inn Select, Solomons, Maryland. August 24–27 (2004)

  12. Wang, J.-A., Wright, I., et.al.: Interface fracture toughness evaluation for MA956 oxide film. In: Proceeding of 2005 ASM International Surface Engineering Congress, St. Paul, Minnesota, August 1–3, pp. 80–89 (2005)

  13. Zhang, W., Feng, Z., Wang, J.-A.: Measurement of fracture toughness of materials with non-uniform microstructure by spiral notch torsion test. In: 2010 ASME PVP Conference, Washington, July 18–22 (2010)

  14. Wang, J.-A., Ren, F., Tan, T., Liu, K.: The development of in situ fracture toughness evaluation techniques in hydrogen environment. Int. J. Hydrog. Energy 40(2015), 2013–2024 (2015)

    Article  Google Scholar 

  15. Wang, J.-A., Tan, T., Jiang, H., Zhang, W., Feng, Z.: Developing fatigue pre-crack procedure to evaluate fracture toughness of pipeline steels using spiral notch torsion test. ORNL/TM-2012/337 (2012)

Download references

Acknowledgements

This project is sponsored by US Department of Energy (DOE) and Oak Ridge National Laboratory Seed Money Program, and US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-A. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JA., Tan, T. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test. Arch Appl Mech 89, 813–822 (2019). https://doi.org/10.1007/s00419-018-1398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1398-2

Keywords

Navigation