Skip to main content
Log in

Rheological properties of magnetic biogels

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bose, H., Rabindranath, R., Ehrlich, J.: Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 23(9), 989–994 (2012)

    Article  Google Scholar 

  2. Filipcsei, G., Csetneki, I., Szilagyi, A., Zrınyi, M.: Magnetic field-responsive smart polymer composites. In: Advances in Polymer Science, vol. 206. Springer, Berlin Heidelberg, pp. 137–189 (2007)

  3. Boczkowska, A., Awietjan, S.: Tuning active magnetorheological elastomers for damping applications. Mater. Sci. Forum 636–637, 766–771 (2010)

    Article  Google Scholar 

  4. Dyke, S., Spencer, B., Sain, M., Carlson, J.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565–575 (1996)

    Article  Google Scholar 

  5. Occhiuzzi, A., Spizzuoco, M., Serino, G.: Experimental analysis of magnetorheological dampers for structural control. Smart Mater. Struct. 12, 703–711 (2003)

    Article  Google Scholar 

  6. Carmona, F., Mouney, C.: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27(5), 1322–1326 (1992)

    Article  Google Scholar 

  7. Feller, J., Linossier, I., Grohens, Y.: Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Mater. Lett. 57(1), 64–71 (2002)

    Article  Google Scholar 

  8. Bañobre-López, M., Piñeiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109(7), 07B313 (2011)

    Article  Google Scholar 

  9. Bock, N., Riminucci, A., Dionigi, C., Russo, A., Tampieri, A., Landi, E.: A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6(3), 786–796 (2010)

    Article  Google Scholar 

  10. Lin, C., Metters, A.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13), 1379–1408 (2006)

    Article  Google Scholar 

  11. Langer, R.: New methods of drug delivery. Science 249(4976), 1527–1533 (1990)

    Article  Google Scholar 

  12. Mitragotri, S., Lahann, J.: Physical approaches to biomaterial design. Nat. Mater. 8, 15–21 (2009)

    Article  Google Scholar 

  13. Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J.: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007)

    Article  Google Scholar 

  14. Kurlyandskaya, G.V., Fernández, E., Safronov, A.P., Svalov, A.V., Beketov, I., Beitia, A.B., García-Arribas, A., Blyakhman, F.A.: Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue. Appl. Phys. Lett. 106, 193702 (2015)

    Article  Google Scholar 

  15. Thevenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42(17), 7099–7116 (2013)

    Article  Google Scholar 

  16. Hunt, N.C., Grover, L.M.: Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 32(6), 733–742 (2010)

    Article  Google Scholar 

  17. Das, B., Mandal, M., Upadhyay, A., Chattopadhyay, P., Karak, N.: Bio-based hyperbranched polyurethane/Fe\(_{3}\)O\(_{4}\) nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 8(3), 035003 (2013)

    Article  Google Scholar 

  18. de Santis, R., Gloria, A., Russo, T., d’Amora, U., Zeppetelli, S., Dionigi, C.: A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci. 122(6), 3599–3605 (2011)

    Article  Google Scholar 

  19. Gloria, A., Russo, R., d’Amora, U., Zeppetelli, S., d’Alessandro, T., Sandri, M., et al.: Magnetic poly(\(\varepsilon \)-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc Interface 10(80), 20120833 (2013)

    Article  Google Scholar 

  20. Hu, S.H., Liu, T.Y., Tsai, C.H., Chen, S.Y.: Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 310(2), 2871–2873 (2007)

    Article  Google Scholar 

  21. Hu, H., Jiang, W., Lan, F., Zeng, X., Ma, S., Wu, Y.: Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 3, 879–886 (2013)

    Article  Google Scholar 

  22. Lai, K., Jiang, W., Tang, J.Z., Wu, Y., He, B., Wang, G., et al.: Superparamagnetic nano-composite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Adv. 2, 13007–13017 (2012)

    Article  Google Scholar 

  23. Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660–672 (2013)

    Article  Google Scholar 

  24. Panseri, S., Cunha, C., Alessandro, T., Sandri, M., Giavaresi, G., Marcacci, M.: Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J. Nanobiotechnol. 10, 32 (2012)

    Article  Google Scholar 

  25. Skaat, H., Ziv-Polat, O., Shahar, A., Last, D., Mardor, Y., Margel, S.: Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Adv. Healthc Mater. 1(2), 168–171 (2012)

    Article  Google Scholar 

  26. Tampieri, A., Landi, E., Valentini, F., Sandri, M., d’Alessandro, T., Dediu, V., et al.: A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22(1), 015104 (2011)

    Article  Google Scholar 

  27. Tampieri, A., d’Alessandro, T., Sandri, M., Sprio, S., Landi, E., Bertinetti, L.: Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 8(2), 843–851 (2012)

    Article  Google Scholar 

  28. Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Jiang, W., Wu, Y.: Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomed. 7, 3365–3378 (2012)

    Article  Google Scholar 

  29. Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Wu, Y., Gu, Z.W.: Preparation and properties of supermagnetic calcium phosphate composite scaffold. J. Inorg. Mater. 28(1), 79–84 (2013)

    Article  Google Scholar 

  30. Zhu, Y., Shang, F., Li, B., Dong, Y., Liu, Y., Lohe, M.R.: Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. J. Mater. Chem. B 1(9), 1279–1288 (2013)

    Article  Google Scholar 

  31. Ziv-Polat, O., Skaat, H., Shahar, A., Margel, S.: Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int. J. Nanomed. 7, 1259–1274 (2012)

    Article  Google Scholar 

  32. Singh, R.K., Patel, K.D., Lee, J.H., Lee, E.J., Kim, J.H., Kim, T.H., et al.: Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLOS ONE 9, e91584 (2014)

    Article  Google Scholar 

  33. Lopez-Lopez, M.T., Scionti, G., Oliveira, A.C., Duran, J.D.G., Campos, A., Alaminos, M., Rodriges, I.A.: Generation and characterization of novel magnetic field-responsive biomaterials. PLOS ONE 10(7), e0133878 (2015)

    Article  Google Scholar 

  34. Nicodemus, G.D., Bryant, S.J.: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B 14(2), 149–165 (2008)

    Article  Google Scholar 

  35. Ladet, S., David, L., Domard, A.: Multi-membrane hydrogels. Nature 452, 76–79 (2008)

    Article  Google Scholar 

  36. Caló, E., Khutoryanskiy, V.V.: Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)

    Article  Google Scholar 

  37. Sharmin, F., et al.: Injectable hydrogels for regenerative engineering, pp. 1–32. Imperial College Press, London (2016)

    Book  Google Scholar 

  38. Banobre-Lopez, M., Pineiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A., Dediu, V., Rivas, J.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109, 07B313 (2011)

    Article  Google Scholar 

  39. Yun, H.M., Ahn, S.J., Park, K.R., Kim, M.J., Kim, J.J., Jinc, G.Z., Kim, H.W., Kim, E.C.: Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98 (2016)

    Article  Google Scholar 

  40. Rodriguez-Arco, L., Rodriguez, I.A., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Kuzhir, P., Duran, J.D.G., Lopez-Lopez, M.T.: Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale 8(15), 8138–8150 (2016)

    Article  Google Scholar 

  41. Lopez-Lopez, M.T., Rodriguez, I.A., Rodriguez-Arco, L., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Zubarev, A., Duran, J.D.G.: Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. J. Magn. Magn. Mater. 431, 110–114 (2017)

    Article  Google Scholar 

  42. Bonhome-Espinosa, A.B., Campos, F., Rodriguez, I.A., Carriel, V., Marins, J.A., Zubarev, A., Duran, J.D.G., Lopez-Lopez, M.T.: Effect of particle concentration on the microstructural and macromechanical properties of biocompatible magnetic hydrogels. Soft Matter 13, 2928–2941 (2017)

    Article  Google Scholar 

  43. Scionti, G., Moral, M., Toledano, M., Osorio, R., Durán, J.D.G., Alaminos, M., Campos, A., López-López, M.T.: Effect of the hydration on the biomechanical properties in a fibrin–agarose tissue-like model. J. Biomed. Mater. Res. Part A 102A, 2573–2582 (2014)

    Article  Google Scholar 

  44. Alaminos, M., Sanchez-Quevedo, M.C., Munoz-Avila, J.I., Serrano, D., Medialdea, S., Carreras, I.: Construction of a complete rabbit cornea substitute using a fibrin–agarose scaffold. Invest. Ophthalmol. Vis. Sci. 47, 3311–3317 (2006)

    Article  Google Scholar 

  45. Bychkova, A.V., Sorokina, O.N., Kovarski, A.L., Shapiro, A.B., Leonova, V.B., Rozenfeld, M.A.: Interaction of fibrinogen with magnetite nanoparticles. Biophysics 55(4), 544–549 (2010)

    Article  Google Scholar 

  46. Cote, H.C.F., Lord, S.T., Pratt, K.P.: \(\gamma \)-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the \(\gamma \)-chain of human fibrinogen. Blood 92(7), 2195–2212 (1998)

    Google Scholar 

  47. Zeliszewska, P., Bratek-Skicki, A., Adamczyk, Z., Ciesla, M.: Human fibrinogen adsorption on positively charged latex particles. Langmuir 30(37), 11165–11174 (2014)

    Article  Google Scholar 

  48. Pitaevskii, L.P., Lifshits, E.M.: Physical Kinetics. Butterworth-Heinemann, Oxford (1999)

    Google Scholar 

  49. Rubistein, M., Colby, R.H.: Polymer Physics. Oxford University, New York (2003)

    Google Scholar 

  50. Grosberg, A., Khokhlov, A.: Statistical Physics of Macromolecules. Springer, Berlin (1994)

    Google Scholar 

  51. Christensen, R.M.: Mechanics of Composite Materials. Krieger Publishing Company, Malabar (1991)

    Google Scholar 

Download references

Acknowledgements

This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic Researches, project 18-08-00178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zubarev.

Ethics declarations

Ethical statement

This study was approved by the Ethics Committee of the University of Granada, Granada, Spain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubarev, A., Bonhome-Espinosa, A.B., Alaminos, M. et al. Rheological properties of magnetic biogels. Arch Appl Mech 89, 91–103 (2019). https://doi.org/10.1007/s00419-018-1450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1450-2

Keywords

Navigation