Skip to main content
Log in

Photo-carrier dynamics in a rotating semiconducting solid sphere under modification of the GN-III model without singularities

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, we extend the modification of the generalized theories of thermoelasticity and photothermal. In this context, a new model has been derived based on the Moore-Gibson-Thompson (MGT) equation and combining the two models of thermoelasticity with one relaxation time (Lord-Shulman) and the theory of Green-Naghdi of the third type (GN-III). One of the most important features of the proposed model is that it predicts limited speeds of thermal signals and photovoltaic waves. The proposed model has been applied to examine the interactions between plasma, thermal, and elastic processes within a solid semiconductor sphere. It was taken into account that the sphere rotates with a constant angular velocity around its axis, is surrounded by an external magnetic field, and is also subjected to thermal shock. The singularities encountered in different physical fields have been addressed in the center and poles of the sphere. The influence of rotation and carrier lifetime parameters on different physical properties of semiconductor materials has been graphically displayed and explained using the Laplace method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams, M.J., Kirkbright, G.F.: Thermal diffusivity and thickness measurements for solid samples utilising the optoacoustic effect. Analyst 102(1218), 678–82 (1977)

    Article  Google Scholar 

  2. Vargas, H., Miranda, L.C.M.: Photoacoustic and re1ated phototherma1 technique. Phys. Rep. 161(2), 43–101 (1988)

    Article  Google Scholar 

  3. Ferreira, S.O., Ying An, C., Bandeira, I.N., Miranda, L.C.M., Vargas, H.: Photoacoustic measurement of the thermal diffusivity of Pb1−xSnxTe alloys. Phys. Rev. B 39(11), 7967–7970 (1989)

    Article  Google Scholar 

  4. Othman, M.I.A., Eraki, E.E.M.: Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model. Multidiscip. Model. Mater. Struct. 14(3), 457–481 (2018)

    Article  Google Scholar 

  5. Stearns, R.G., Kino, G.S.: Effect of electronic strain on photoacoustic generation in silicon. Appl. Phys. Lett. 47(10), 1048–1050 (1985)

    Article  Google Scholar 

  6. Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36(1), 3–8 (1965)

    Article  Google Scholar 

  7. Todorovic, D.M., Nikolic, P.M., Bojicic, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    Article  Google Scholar 

  8. Song, Y.Q., Todorovic, D.M., Cretin, B., Vairac, P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    Article  MATH  Google Scholar 

  9. Abouelregal, A.E.: Magnetophotothermal interaction in a rotating solid cylinder of semiconductor silicone material with time dependent heat flow. Appl. Math. Mech. Engl. Ed. 42, 39–52 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abouelregal, A.E., Sedighi, H.M., Shirazi, A.H.: The effect of excess carrier on a semiconducting semi-infinite medium subject to a normal force by means of Green and Naghdi approach. Silicon (2021). https://doi.org/10.1007/s12633-021-01289-9

    Article  Google Scholar 

  11. Abouelregal, A.E., Ahmad, H., Elagan, S.K., Alshehri, N.A.: Modified Moore–Gibson–Thompson photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. Int. J. Mod. Phys. C 32(12), 2150163 (2021)

    Article  MathSciNet  Google Scholar 

  12. Zakaria, K., Sirwah, M.A., Abouelregal, A.E., Rashid, A.F.: Photo-thermoelastic model with time-fractional of higher order and phase lags for a semiconductor rotating materials. Silicon. 13(2), 573–85 (2021)

    Article  Google Scholar 

  13. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  14. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  15. Tzou, D.Y.: Experimental support for the lagging behaviour in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995)

    Article  Google Scholar 

  16. Tzou, D.Y.: A unified approach for heat conduction from macro to microscale. J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  17. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. Royal Soc. A Math. Phys. Eng. Sci. 432, 171–194 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  19. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tiwari, R., Kumar, R.: Analysis of plane wave propagation under the purview of three phase lag theory of thermoelasticity with non-local effect. Eur. J. Mech. A. Solids 88, 104235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tiwari, R., Kumar, R., Abouelregal, A.E.: Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory-dependent heat conduction theory involving three phase lags. Mech. Time-Depend. Mater. (2021). https://doi.org/10.1007/s11043-021-09487-z

    Article  Google Scholar 

  22. Tiwari, R., Mukhopadhyay, S.: On electromagneto-thermoelastic plane waves under Green-Naghdi theory of thermoelasticity-II. J. Therm. Stresses 40(8), 1040–1062 (2017)

    Article  Google Scholar 

  23. Tiwari, R., Misra, J.C., Prasad, R.: Magneto-thermoelastic wave propagation in a finitely conducting medium: a comparative study for three types of thermoelasticity I, II, and III. J. Therm. Stresses (2021). https://doi.org/10.1080/01495739.2021.1918594

    Article  Google Scholar 

  24. Dornisch, W., Schrade, D., Xu, B.X., Keip, M.A., Müller, R.: Coupled phase field simulations of ferroelectric and ferromagnetic layers in multiferroic heterostructures. Archiv. Appl. Mech. 89(6), 1031–56 (2019)

    Article  Google Scholar 

  25. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Akgöz, B., Civalek, Ö.: A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos. Struct. 176, 1028–1038 (2017)

    Article  Google Scholar 

  27. Arefi, M., Firouzeh, S., Mohammad-Rezaei Bidgoli, E., Civalek, Ö.: Analysis of porous micro-plates reinforced with FG-GNPS based on reddy plate theory. Compos. Struct. 247, 112391 (2020)

    Article  Google Scholar 

  28. Manchi, R., Ponalagusamy, R.: Modeling of pulsatile EMHD flow of Au-blood in an inclined porous tapered atherosclerotic vessel under periodic body acceleration. Arch. Appl. Mech. 91(7), 3421–3447 (2021)

    Article  Google Scholar 

  29. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Diff. Eqns. 259, 7610–7635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  32. Abouelregal, A.E., Ahmed, I.-E., Nasr, M.E., Khalil, K.M., Zakria, A., Mohammed, F.A.: Thermoelastic processes by a continuous heat source line in an infinite solid via Moore–Gibson–Thompson thermoelasticity. Materials 13(19), 4463 (2020)

    Article  Google Scholar 

  33. Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Moore–Gibson–Thompson thermoelasticity model with temperature-dependent properties for thermo-viscoelastic orthotropic solid cylinder of infinite length under a temperature pulse. Phys. Scr. (2021). https://doi.org/10.1088/1402-4896/abfd63

    Article  Google Scholar 

  34. Aboueregal, A.E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore–Gibson–Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L: J. Mater. Design Appl. 235(5), 1004–1020 (2021)

    Google Scholar 

  35. Aboueregal, A.E., Sedighi, H.M., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-00998-1

    Article  Google Scholar 

  36. Abouelregal, A.E., Ersoy, H., Civalek, Ö.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13), 1536 (2021)

    Article  Google Scholar 

  37. Dastjerdi, S., Akgöz, B., Civalek, O.: On the effect of viscoelasticity on behavior of gyroscopes. Int. J. Eng. Sci. 149, 103236 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bazarra, N., Fernández, J.R., Quintanilla, R.: Analysis of a Moore-Gibson-Thompson thermoelastic problem. J. Comput. Appl. Math. 382(15), 113058 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tibault, J., Bergeron, S., Bonin, H.W.: On fnite-diference solutions of the heat equation in spherical coordinates. Numer. Heat Transf. Part A Appl. 12, 457–474 (1987)

    Google Scholar 

  40. Youssef, H.M., El-Bary, A.A.: Characterization of the photothermal interaction of a semiconducting solid sphere due to the mechanical damage and rotation under Green-Naghdi theories. Mech. Adv. Mater. Struct. 29(6), 889–904 (2020)

    Article  Google Scholar 

  41. Youssef, H.M., El-Bary, A.A., Al-Lehaibi, E.A.N.: Thermal-stress analysis of a damaged solid sphere using hyperbolic two-temperature generalized thermoelasticity theory. Sci. Rep. 11, 2289 (2021)

    Article  Google Scholar 

  42. Xie, P., He, T.: Investigation on the electromagnetothermoelastic coupling behaviors of a rotating hollow cylinder with memory-dependent derivative. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1919524

    Article  Google Scholar 

  43. Song, Y.Q., Bai, J.T., Ren, Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223, 1545–1557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vasilev, A.N., Sandomirskii, V.B.: Photoacoustic effects in finite semiconductors. Sov. Phys. Semicond. 18(109518), 1095 (1984)

    Google Scholar 

  45. Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Compt. Rend 247, 431–433 (1958)

    MATH  Google Scholar 

  46. Vernotte, P.: Some possible complications in the phenomena of thermal conduction. Compt. Rend 252, 2190–2191 (1961)

    Google Scholar 

  47. Abouelregal, A.E.: A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags. Multidiscip. Model. Mater. Struct. 16(4), 689–711 (2019)

    Article  Google Scholar 

  48. Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express 6, 116535 (2019)

    Article  Google Scholar 

  49. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transform. J. Comp. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tzou, D.Y.: Macro-to Micro-Scale Heat Transfer: The Lagging Behavior. Taylor & Francis, Abingdon, UK (1997)

    Google Scholar 

  51. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. Assoc. Comp. Mach. 15, 115–123 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  52. De Hoog, F.R., Knight, J.H., Stokes, A.N.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 3(3), 357–366 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  53. Soleiman, A., Abouelregal, A.E., Ahmad, H., Thounthong, P.: Generalized thermoviscoelastic model with memory dependent derivatives and multi-phase delay for an excited spherical cavity. Phys. Scr. 95(11), 115708 (2020)

    Article  Google Scholar 

  54. Trajkovski, D., Čukić, R.: A coupled problem of thermoelastic vibrations of a circular plate with exact boundary conditions. Mech. Res. Commun. 26(2), 217–224 (1999)

    Article  MATH  Google Scholar 

  55. Abouelregal, A.E., Mondal, S.: Thermoelastic vibrations in initially stressed rotating microbeams caused by laser irradiation. Z. Angew. Math. Mech. 102(4), e202000371 (2022)

    MathSciNet  Google Scholar 

  56. Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Mod. Phys. Lett. B 35(18), 2150297 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. (DSR-2021-03-03194). We would also like to extend our sincere thanks to the College of Science and Arts in Al-Qurayyat for its technical support.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results, reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ahmed E. Abouelregal.

Ethics declarations

Conflict of interest

The author(s) declare(s) no potential conflicts of interest with respect to the research, authorship and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, IE., Abouelregal, A.E. & Mostafa, D.M. Photo-carrier dynamics in a rotating semiconducting solid sphere under modification of the GN-III model without singularities. Arch Appl Mech 92, 2351–2370 (2022). https://doi.org/10.1007/s00419-022-02180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02180-8

Keywords

Navigation