Skip to main content
Log in

Numerical and experimental deflection behavior of damaged doubly curved composite laminated shell structure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The deflection behavior of laminated shell structure with combined damages (crack/delamination) under mechanical loading is presented numerically and verified with subsequent experimental results. In this article, the damaged layer structure is modeled mathematically using higher-order (third-order) polynomials and the finite element method. The variational method is employed to obtain the final governing equation for the shell model. The results are obtained computationally using a computer code developed in a MATLAB environment. The consistency of the current mathematical model is confirmed by performing a convergence test, and the model's validity is checked further by equating the solution with published data in the open domain. Finally, some examples are presented to observe the combined effect of delamination (various shapes and sizes) and/or crack (different orientations), including various input parameters (modular ratio, curvature ratio, thickness ratio, boundary restriction) on the deflection behavior of laminated curved shell structure under mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. An, V., Zobeiry, N., Erkmen, E., Malek, S.: Buckling behaviour of laminated viscoelastic composites under axial loads. Mech. Mater. 159, 103897 (2021). https://doi.org/10.1016/j.mechmat.2021.103897

    Article  Google Scholar 

  2. Fekih, L.B., Verlinden, O., Kouroussis, G., E-glass, M., Structures, C., Ben, L., Verlinden, O., Kouroussis, G.: Mechanical characterization of E-glass laminates under large bending. Compos. Struct. 255, 112892 (2021). https://doi.org/10.1016/j.compstruct.2020.112892

    Article  Google Scholar 

  3. Gong, W., Chen, J., Patterson, E.A.: Buckling and delamination growth behaviour of delaminated composite panels subject to four-point bending. Compos. Struct. 138, 122–133 (2016). https://doi.org/10.1016/j.compstruct.2015.11.054

    Article  Google Scholar 

  4. Andrew, J.J., Arumugam, V., Dhakal, H.N.: Effect of intra-ply hybrid patches and hydrothermal aging on local bending response of repaired gfrp composite laminates. Molecules 25, 9–11 (2020). https://doi.org/10.3390/molecules25102325

    Article  Google Scholar 

  5. Ostapiuk, M., Surowska, B.: Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers. Sci. Eng. Compos. Mater. 25, 1–12 (2017). https://doi.org/10.1515/secm-2017-0180

    Article  Google Scholar 

  6. Riddell-smith, L., Cunningham, L., Mandal, P.: Experimental study of 3-ply laminated glass beams subject to in-plane loads. Structures. 33, 3984–3998 (2021). https://doi.org/10.1016/j.istruc.2021.07.004

    Article  Google Scholar 

  7. Murakami, H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53, 661–666 (2016). https://doi.org/10.1115/1.3171828

    Article  MATH  Google Scholar 

  8. Kam, C.Z., Kueh, A.H.: Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration. Sci. World J. 2013, 350890 (2013). https://doi.org/10.1155/2013/350890

    Article  Google Scholar 

  9. Rakočević, M., Rako, M.: Bending of laminated composite plates in layerwise bending of laminated composite plates in layerwise theory. Intech Open. (2018). https://doi.org/10.5772/intechopen.69975

    Article  Google Scholar 

  10. Sarvestani, H.Y., Naghashpour, A., Rarani, H.: Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory. Int. J. Adv. Struct. Eng. 7, 329–340 (2015). https://doi.org/10.1007/s40091-014-0073-2

  11. Sayyad, A.S., Ghugal, Y.M., Naik, N.S.: Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory. Curved and Layer. Struct. 2, 279–289 (2015). https://doi.org/10.1515/cls-2015-0015

    Article  Google Scholar 

  12. Ottavio, M., Dozio, L., Vescovini, R., Polit, O., Ottavio, M., Dozio, L., Vescovini, R., Bending, O.P.: Bending analysis of composite laminated and sandwich structures using sublaminate variable-kinematic Ritz models. Compos. Struct. 155, 45–62 (2019). https://doi.org/10.1016/j.compstruct.2016.07.036

    Article  Google Scholar 

  13. Wang, M., Zhang, J., Yuan, H., Guo, H., Zhuang, W.: The plastic behavior in the large deflection response of fiber metal laminate sandwich beams under transverse loading. Materials (Basel). 15, 439 (2022). https://doi.org/10.3390/ma15020439

    Article  Google Scholar 

  14. Monge, J.C., Mantari, J.L., Yarasca, J., Arciniega, R.A.: Bending response of doubly curved laminated composite shells using hybrid refined models. IOP Conf. Ser. Mater. Sci. Eng. 5, 875–899 (2019). https://doi.org/10.22055/JACM.2019.27297.1397

    Article  Google Scholar 

  15. Reddy, B.S., Reddy, A.R., Kumar, J.S., Reddy, K.V.K.: Bending analysis of laminated composite plates using finite element method. Int. J. Eng. Sci. Technol. 4, 177–190 (2012). https://doi.org/10.4314/ijest.v4i2.14

    Article  Google Scholar 

  16. Kopparthi, P.K., Gemaraju, S., Pathakokila, B.R., Gamini, S.: Failure analysis of delaminated carbon/epoxy composite under pure bending: validation with numerical analysis. Multidiscip. Model. Mater. Struct. 17, 974–989 (2021). https://doi.org/10.1108/MMMS-01-2021-0015

    Article  Google Scholar 

  17. Reddy, J.N., Barbero, E.J., Teply, J.L.: A plate bending element based on a generalized laminate plate theory. Numer. Methods Eng. 28, 2275–2292 (1989). https://doi.org/10.1002/nme.1620281006

    Article  MATH  Google Scholar 

  18. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. J. Eng. Sci. 23, 319–330 (1985). https://doi.org/10.1016/0020-7225(85)90051-5

    Article  MATH  Google Scholar 

  19. Bacciocchi, M., Tarantino, A.M.: Third-order theory for the bending analysis of laminated thin and thick plates including the strain gradient effect. Materials (Basel). 14, 1–24 (2021). https://doi.org/10.3390/ma14071771

    Article  Google Scholar 

  20. Ghumare, S.M., Sayyad, A.S.: Analytical solutions for the hygro-thermo-mechanical bending of FG beams using a new fifth order shear and normal deformation theory. Appl. Comput. Mech. 14, 5–30 (2020). https://doi.org/10.24132/acm.2020.580

    Article  Google Scholar 

  21. Barbero, E.J., Barbero, J.C.: Analytical solution for bending of laminated composites with matrix cracks. Compos. Struct. 135, 140–155 (2016). https://doi.org/10.1016/j.compstruct.2015.09.021

    Article  Google Scholar 

  22. Rezaiee, M., Arash, P.: Three stress—based triangular elements. Eng. Comput. 36, 1325–1345 (2020). https://doi.org/10.1007/s00366-019-00765-6

    Article  Google Scholar 

  23. Kumari, S., Chakravorty, D.: Finite element bending behaviour of discretely delaminated composite conoidal shell roofs under concentrated load. Int. J. Eng. Sci. Technol. 2, 54–70 (2010). https://doi.org/10.4314/ijest.v2i4.59199

    Article  Google Scholar 

  24. Parhi, P.K., Bhattacharyya, S.K., Sinha, P.K.: Failure analysis of multiple delaminated composite plates due to bending and impact. Bull. Mater. Sci. 24, 143–149 (2001). https://doi.org/10.1007/BF02710091

    Article  Google Scholar 

  25. Andrews, M.G., Massabò, R., Cavicchi, A., Cox, B.N.: Dynamic interaction effects of multiple delaminations in plates subject to cylindrical bending. Int. J. Solids Struct. 46, 1815–1833 (2009). https://doi.org/10.1016/j.ijsolstr.2008.11.027

    Article  MATH  Google Scholar 

  26. Tafreshi, A.: Instability of delaminated composite cylindrical shells under combined axial compression and bending. Compos. Struct. 82, 422–433 (2008). https://doi.org/10.1016/j.compstruct.2007.01.021

    Article  Google Scholar 

  27. Hou, J.P., Jeronimidis, G.: Bending stiffness of composite plates with delamination. Compos. Part A Appl. Sci. Manuf. 31, 121–132 (2000). https://doi.org/10.1016/S1359-835X(99)00064-0

    Article  Google Scholar 

  28. Nanda, N.: Static analysis of delaminated composite shell panels using layerwise theory. Acta Mech. 2901, 2893–2901 (2014). https://doi.org/10.1007/s00707-014-1200-7

    Article  MATH  Google Scholar 

  29. Kumar, C., Kumar, S., Ranjan, T.: Thermomechanical de fl ection and stress responses of delaminated shallow shell structure using higher-order theories. Compos. Struct. 184, 135–145 (2018). https://doi.org/10.1016/j.compstruct.2017.09.071

    Article  Google Scholar 

  30. Sahoo, S.S., Panda, S.K., Sen, D.: Effect of delamination on static and dynamic behavior of laminated composite plate. AIAA J. 54, 1–15 (2016). https://doi.org/10.2514/1.J054908

    Article  Google Scholar 

  31. Kam, T.Y., Sher, H.F., Chao, T.N.: Predictions of deflection and first-ply plates via the finite element approach. Int. J. Solids Struct. 33, 375–398 (1996). https://doi.org/10.1016/0020-7683(95)00042-9

    Article  MATH  Google Scholar 

  32. Singh, B.N., Lal, A., Kumar, R.: Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties. Eng. Struct. 30, 1101–1112 (2008). https://doi.org/10.1016/j.engstruct.2007.07.007

    Article  Google Scholar 

  33. Yeh, M., Fang, L., Kao, M.: Bending behavior of delaminated composite plates with contact effects. Compos. Struct. 39, 347–356 (1998). https://doi.org/10.1016/S0263-8223(97)00127-X

    Article  Google Scholar 

  34. Farokhi, H., Bacarreza, O., Aliabadi, M.H.F.: Probabilistic optimisation of mono-stringer composite stiffened panels in post-buckling regime. Struct. Multidiscip. Optim. (2020). https://doi.org/10.1007/s00158-020-02565-9

    Article  Google Scholar 

  35. Farokhi, H., Xia, Y., Erturk, A.: Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers. Nonlinear Dyn. 107, 457–475 (2022). https://doi.org/10.1007/s11071-021-07023-9

    Article  Google Scholar 

  36. Farokhi, H., Erturk, A.: Three-dimensional nonlinear extreme vibrations of cantilevers based on a geometrically exact model. J. Sound Vib. 510, 116295 (2021). https://doi.org/10.1016/j.jsv.2021.116295

    Article  Google Scholar 

  37. Farokhi, H., Tavallaeinejad, M., Païdoussis, M.P.: Geometrically exact dynamics of cantilevered pipes conveying fluid. J. Fluids Struct. 106, 103364 (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103364

    Article  Google Scholar 

  38. Tan, D., Yavarow, P., Erturk, A.: Resonant nonlinearities of piezoelectric macro-fiber composite cantilevers with interdigitated electrodes in energy harvesting. Nonlinear Dyn. 92, 1935–1945 (2018). https://doi.org/10.1007/s11071-018-4172-7

    Article  Google Scholar 

  39. Civalek, Ö., Avcar, M.: Free vibration and buckling analyses of CNT reinforced laminated non—rectangular plates by discrete singular convolution method. Eng. Comput. 38, 489–521 (2022). https://doi.org/10.1007/s00366-020-01168-8

    Article  Google Scholar 

  40. Sobhani, E., Masoodi, A.R., Civalek, Ö., Avcar, M.: Natural frequency analysis of FG-GOP / polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers. Eng. Anal. Bound. Elem. 138, 369–389 (2022). https://doi.org/10.1016/j.enganabound.2022.03.009

    Article  MathSciNet  MATH  Google Scholar 

  41. Sobhani, E., Arbabian, A., Civalek, Ö., Avcar, M.: The free vibration analysis of hybrid porous nanocomposite joined hemispherical—cylindrical—conical shells. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01453-0

    Article  Google Scholar 

  42. Devarajan, B., Kapania, R.K.: Thermal buckling of curvilinearly sti ff ened laminated composite plates with cutouts using isogeometric analysis. Compos. Struct. 238, 111881 (2020). https://doi.org/10.1016/j.compstruct.2020.111881

    Article  Google Scholar 

  43. Devarajan, B., Kapania, R.K.: Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method. Aerosp. Sci. Technol. 121, 107350 (2022). https://doi.org/10.1016/j.ast.2022.107350

    Article  Google Scholar 

  44. Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mahapatra, S.S.: Nonlinear transient finite-element analysis of delaminated composite shallow shell panels. AIAA J. 55, 1734–1748 (2017). https://doi.org/10.2514/1.J055624

    Article  Google Scholar 

  45. Singh, V.K., Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct. 85, 341–349 (2014). https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  46. Dewangan, H.C., Panda, S.K.: Numerical thermoelastic eigenfrequency prediction of damaged layered shell panel with concentric/eccentric cutout and corrugated (TD/TID) properties. Eng. Comput. 38, 2009–2025 (2020). https://doi.org/10.1007/s00366-020-01199-1

    Article  Google Scholar 

  47. Dewangan, H.C., Panda, S.K.: Numerical transient responses of cut-out borne composite panel and experimental validity. Proc. IMechE Part G J Aerosp. Eng. 235, 1521–1536 (2021). https://doi.org/10.1177/0954410020977344

    Article  Google Scholar 

  48. Kant, T., Swaminathan, K.: Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56, 329–344 (2002). https://doi.org/10.1016/S0263-8223(02)00017-X

    Article  Google Scholar 

  49. Dewangan, H.C., Sharma, N., Panda, S.K.: Numerical nonlinear static analysis of cutout-borne multilayered structures and experimental validation. AIAA J. 1, 1–13 (2021). https://doi.org/10.2514/1.j060643

    Article  Google Scholar 

  50. Hirwani, C.K., Panda, S.K., Ranjan, T.: Delamination effect on flexural responses of layered curved shallow shell panel-experimental and numerical analysis. Int. J. Comput. Methods. (2018). https://doi.org/10.1142/S0219876218500275

    Article  MathSciNet  MATH  Google Scholar 

  51. Hirwani, C.K., Panda, S.K.: Nonlinear thermal free vibration frequency analysis of delaminated shell panel using FEM. Compos. Struct. 224, 111011 (2019). https://doi.org/10.1016/j.compstruct.2019.111011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Dewangan, H.C., Sharma, N. et al. Numerical and experimental deflection behavior of damaged doubly curved composite laminated shell structure. Arch Appl Mech 92, 2881–2897 (2022). https://doi.org/10.1007/s00419-022-02202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02202-5

Keywords

Navigation