Skip to main content
Log in

Circadian variation in base rate measures of cardiac autonomic activity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

To investigate the role of the circadian pacemaker in autonomic modulation of base rate cardiac activity, 29 healthy subjects participated in a constant routine protocol. They were randomly divided into two groups in order to manipulate prior wakefulness. Group 1 started at 0900 hours immediately after a monitored sleep period, while group 2 started 12 h later. Measures of interbeat intervals (IBIs), respiratory sinus arrythmia (RSA, an estimate of parasympathetic activity), pre-ejection period (PEP, an estimate of sympathetic activity), and core body temperature (CBT) were recorded continuously. Multilevel regression analyses (across-subjects) revealed significant 24- and/or 12-h sinusoidal circadian variation for CBT, IBI, and RSA, but not for PEP. Subject-specific 24+12 h sinusoidal fits demonstrated a convergence of phase distribution for IBI and RSA of group 1 similar to CBT, while PEP showed a relatively large (i.e. random) distribution of phase. In group 2, all cardiac measures showed large distributions of phase. Unexpected results in the cardiac measures were found in group 2, probably caused by group differences in prior activation. Also, effects of sleep deprivation were observed for IBI and RSA in group 2. Consequently, all cardiac measures revealed significant sinusoidal × group interactions, a result not shown in CBT. These findings were interpreted as an indication for circadian endogenous parasympathetic modulation of cardiac activity that is mainly confounded by prior wakefulness that extends 24 h, while the sympathetic modulation is relatively uncoupled from the endogenous circadian drive and mainly influenced by prior activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738

    Article  CAS  PubMed  Google Scholar 

  • Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Haikady NN, Porges SW, Saul JP, Stone PH, van der Molen MW (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648

    CAS  PubMed  Google Scholar 

  • Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  • Brown EN, Czeisler CA (1991) The statistical analysis of circadian phase and amplitude in constant-routine core temperature data. J Biol Rhythms 7:177–202

    Google Scholar 

  • Buijs RM, Hermes MHLJ, Kalsbeek A (1998) The suprachiasmatic nucleus–paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res 119:365–382

    CAS  PubMed  Google Scholar 

  • Buijs RM, Wortel J, van Heerikhuize JJ, Feenstra MGP, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Burgess HJ, Trinder J, Kim Y, Luke D (1997) Sleep and circadian influences on cardiac autonomic nervous system activity. Am J Physiol 273:H1761–H1768

    CAS  PubMed  Google Scholar 

  • Cacioppo JT, Uchino BN, Berntson GG (1994) Individual differences in the autonomic origins of heart rate reactivity: the psychometrics of respiratory sinus arrhythmia and preejection period. Psychophysiology 31:412–419

    CAS  PubMed  Google Scholar 

  • Czeisler CA, Brown EN, Ronda JM, Kronauer RE, Richardson GS, Freitag WO (1985) A clinical method to assess the endogenous circadian phase (ECP) of the deep circadian oscillator in man. Sleep Res 14:295

    Google Scholar 

  • Dai J, Swaab DF, van der Vliet J, Buijs RM (1998) Postmortem tracing reveals the organisation of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol 400:87–102

    Article  CAS  PubMed  Google Scholar 

  • De Geus EJC, Willemsen GHM, Klaver CHAM, van Doornen LJP (1995) Ambulatory measurement of respiratory sinus arrhythmia and respiratory rate. Biol Psychol 41:205–227

    Article  PubMed  Google Scholar 

  • Duffy JF, Dijk DJ (2002) Getting through to circadian oscillators: why use constant routines? J Biol Rhythms 17:4–13

    Article  PubMed  Google Scholar 

  • Holmes AL, Burgess HJ, Dawson D (2002) Effects of sleep pressure on endogenous cardiac autonomic activity and body temperature. J Appl Physiol 92:2578–2584

    PubMed  Google Scholar 

  • Hox JJ (2002) Multilevel analysis: techniques and applications. Lawrence Erlbaum, Mahwah

    Google Scholar 

  • Kerkhof GA, van Dongen HPA (1996) Morning-type and evening-type individuals differ in the phase position of their endogenous circadian oscillator. Neurosci Lett 218:153–156

    Article  CAS  PubMed  Google Scholar 

  • Kerkhof GA, van Dongen HPA, Bobbert AC (1998) Absence of endogenous circadian rhythmicity of blood pressure? Am J Hypertens 11:373–377

    Article  CAS  PubMed  Google Scholar 

  • Kräuchi K, Wirz-Justice A (1994) Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol 267:R819–R829

    PubMed  Google Scholar 

  • Kräuchi K, von Arb M, Werth E, Renz C, Wirz-Justice A (2000) Morning melatonin administration and heart rate variability in healthy young men during 58 hours constant bedrest. Sleep 23:A113–A114

    Google Scholar 

  • Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. J Physiol 285:455–470

    CAS  PubMed  Google Scholar 

  • Monk TH, Buysse DJ, Reynolds III CF, Berga SL, Jarrett DB, Begley AE, Kupfer DJ (1997) Circadian rhythms in human performance and mood under constant conditions. J Sleep Res 6:9–18

    Article  CAS  PubMed  Google Scholar 

  • Moore-Ede MC, Sulzman, FM, Fuller CA (1982) The clocks that time us. Harvard University Press, Cambridge, USA

  • Nademanee K, Intarachot V, Josephson MA, Singh BH (1987) Circadian variation in occurence of transient overt and silent myocardial ischemia in chronic stable angina and comparison with prinzmetal angina in men. Am J Cardiol 60:494–498

    Article  CAS  PubMed  Google Scholar 

  • Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woodhouse G, Draper D, Langford I, Lewis T (2000) A user’s guide to MLwiN. http://multilevel.ioe.ac.uk/. Multilevel Models Project, Institute of Education, University of London. Cited 17 October 2003

  • Rocco MB, Barry J, Campbell S, Nabel E, Cook EF, Goldman L, Selwyn AP (1987) Circadian variation of transient myocardial ischemia in patients with coronary artery disease. Circulation 75:395–400

    CAS  PubMed  Google Scholar 

  • Scheer FAJL, van Doornen LJP, Buijs RM (1999) Light and diurnal cycle affect human heart rate: Possible role for the circadian pacemaker. J Biol Rhythms 14:202–212

    Article  CAS  PubMed  Google Scholar 

  • Scheer FAJL, ter Horst GJ, van der Vliet J, Buijs RM (2001) Physiological and anatomical evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol 280:H1391–H1399

    CAS  Google Scholar 

  • Sherwood A, Allen MT, Kelsey RM, Lovallo WR, van Doornen LJP (1990) Methodological guidelines for impedance cardiography. Psychophysiology 27:1–21

    CAS  PubMed  Google Scholar 

  • Van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute J (1994) Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Physiol 35:H548–H554

    Google Scholar 

  • Van Dongen HPA, Maislin G, Kerkhof GA (2001) Repeated assessment of the endogenous 24-hour profile of blood pressure under constant routine. Chronobiol Int 18:85–98

    Article  PubMed  Google Scholar 

  • Van Dongen HPA, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26:117–126

    PubMed  Google Scholar 

  • Van Doornen LJP, de Geus EJC (1996) Ambulatory assessment of parasympathetic/sympathetic balance by impedance cardiography. In: Fahrenberg J, Myrtek M (eds) Ambulatory assessment. Computer-assisted psychological and psychophysiological methods in ambulatory monitoring and field studies. Hogrefe and Huber, Seattle, pp 141–164

  • Warren WS, Champney TH, Cassone VM (1994) The suprachiasmatic nucleus controls the circadian rhythm of heart rate via the sympathetic nervous system. Physiol Behav 55:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Watts AG (1991) The efferent projections of the suprachiasmatic nucleus: Anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus. The mind’s clock. Oxford University Press, New York, pp 77–106

Download references

Acknowledgements

The authors would like to thank all the subjects who participated in this study, especially Simone van Binnendijk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. J. van Eekelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eekelen, A.P.J., Houtveen, J.H. & Kerkhof, G.A. Circadian variation in base rate measures of cardiac autonomic activity. Eur J Appl Physiol 93, 39–46 (2004). https://doi.org/10.1007/s00421-004-1158-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1158-6

Keywords

Navigation