Skip to main content

Advertisement

Log in

Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study investigated whether high frequency in vitro stimulation of rat fast-twitch extensor digitorum longus muscle depresses Na+, K+-ATPase (NKA) activity as measured by the maximal in vitro 3-O-MFPase assay. EDL muscles subjected to 10 s continuous 100 Hz stimulation reduced tetanic force by 51.8 ± 5.1% which recovered to 81.2 ± 6.1% after 1 min and remained stable over 1 h recovery period. A second bout reduced force by 50.3 ± 3.8% of initial but had no effect on 3-O-MFPase activity. Three minutes of intermittent stimulation (1 s at 100 Hz and 4 s recovery) resulted in 87.0 ± 2.8% decline force with slow recovery (62.7 ± 5.8% of initial after 1 h). The second 3-min bout reduced force by 83.3 ± 3.6% of initial with no change in maximal 3-O-MFPase activity. These findings contrast previous human studies where fatiguing voluntary exercise depresses maximal NKA activity. This suggests that NKA in rat fast-twitch muscle is resistant to fatigue-induced inactivation under these conditions. Furthermore, the loss of force with fatigue was not related to depressed maximal NKA activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567:723–735. doi:10.1113/jphysiol.2005.091694

    Article  PubMed  CAS  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Impaired calcium release during fatigue. J Appl Physiol 104:296–305. doi:10.1152/japplphysiol.00908.2007

    Article  PubMed  CAS  Google Scholar 

  • Arkhipenko YV, Meerson FZ, Sazontova TG, Kagan VE (1985) Mode of lipid peroxidation-induced inhibition of Na, K-ATPase. Acta Physiol Pharmacol Bulg 11:70–78

    PubMed  CAS  Google Scholar 

  • Aughey RJ, Gore CJ, Hahn AG, Garnham AP, Clark SA, Petersen AC, Roberts AD, McKenna MJ (2005) Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+–K+-ATPase activity in well-trained athletes. J Appl Physiol 98:186–192. doi:10.1152/japplphysiol.01335.2003

    Article  PubMed  CAS  Google Scholar 

  • Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, Goodman C, Chow CM, Martin DT, Hawley JA, McKenna MJ (2006) Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K+ ATPase activity in well-trained athletes. Eur J Appl Physiol 98:299–309. doi:10.1007/s00421-006-0280-z

    Article  PubMed  CAS  Google Scholar 

  • Aughey RJ, Murphy KT, Clark SA, Garnham AP, Snow RJ, Cameron-Smith D, Hawley JA, McKenna MJ (2007) Muscle Na+–K+-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. J Appl Physiol 103:39–47. doi:10.1152/japplphysiol.00236.2006

    Article  PubMed  CAS  Google Scholar 

  • Barclay CJ (2005) Modeling diffusive O2 supply to isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil 26:225–235. doi:10.1007/s10974-005-9013-x

    Article  PubMed  CAS  Google Scholar 

  • Bauer N, Muller-Ehmsen J, Kramer U, Hambarchian N, Zobel C, Schwinger RHG, Neu H, Kirch U, Grunbaum EG, Schoner W (2005) Ouabain-like compound changes rapidly on physical exercise in humans and dogs. Hypertension 45:1024–1028. doi:10.1161/01.HYP.0000165024.47728.f7

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Sulova Z, Vrbanova A (1998) Ca2+-induced inhibition of sodium pump: non-competitive inhibition in respect of magnesium and sodium cations. Gen Physiol Biophys 17:179–188

    PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu S (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol 287:C817–C833. doi:10.1152/ajpcell.00139.2004

    Article  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    PubMed  CAS  Google Scholar 

  • Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184. doi:10.1113/jphysiol.2007.147470

    Article  PubMed  CAS  Google Scholar 

  • Clausen T (2003) Na+–K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    PubMed  CAS  Google Scholar 

  • Clausen T (2004) Evidence that the Na+–K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Acta Physiol Scand 180:209–216. doi:10.1111/j.0001-6772.2003.01251.x

    Article  PubMed  CAS  Google Scholar 

  • Everts ME, Andersen JP, Clausen T, Hansen O (1989) Quantitative determination of Ca2+-dependent Mg2+-ATPase from sarcoplasmic reticulum in muscle biopsies. Biochem J 260:443–449

    PubMed  CAS  Google Scholar 

  • Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD (2002a) Human neuromuscular fatigue is associated with altered Na+–K+-ATPase activity following isometric exercise. J Appl Physiol 92:1585–1593

    PubMed  CAS  Google Scholar 

  • Fowles JR, Green HJ, Schertzer JD, Tupling AR (2002b) Reduced activity of muscle Na+-K+-ATPase after prolonged running in rats. J Appl Physiol 93:1703–1708

    PubMed  CAS  Google Scholar 

  • Fowles JR, Green HJ, Ouyang J (2004) Na+−K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics. J Appl Physiol 96:316–326

    Article  PubMed  CAS  Google Scholar 

  • Fraser SF, McKenna MJ (1998) Measurement of Na+, K+-ATPase activity in human skeletal muscle. Anal Biochem 258:63–67. doi:10.1006/abio.1998.2572

    Article  PubMed  CAS  Google Scholar 

  • Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, Selig SE, Kjeldsen K, McKenna MJ (2002) Fatigue depresses maximal in vitro skeletal muscle Na(+)–K(+)-ATPase activity in untrained and trained individuals. J Appl Physiol 93:1650–1659

    PubMed  CAS  Google Scholar 

  • Fredsted A, Mikkelsen UR, Gissel H, Clausen T (2005) Anoxia induces Ca2+ influx and loss of cell membrane integrity in rat extensor digitorum longus muscle. Exp Physiol 90:703–714. doi:10.1113/expphysiol.2005.030247

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Wymore RS, Wang Y, Gaudette GR, Krukenkamp IB, Cohen IS, Mathias RT (2002) Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J Gen Physiol 119:297–312. doi:10.1085/jgp.20028501

    Article  PubMed  CAS  Google Scholar 

  • Gissel H (2005) The role of Ca2+ in muscle cell damage. Ann N Y Acad Sci 1066:166–180. doi:10.1196/annals.1363.013

    Article  PubMed  CAS  Google Scholar 

  • Gordon LM, Sauerheber RD, Esgate JA (1978) Spin label studies on rat liver and heart plasma membranes: effects of temperature, calcium, and lanthanum on membrane fluidity. J Supramol Struct 9:299–326. doi:10.1002/jss.400090303

    Article  PubMed  CAS  Google Scholar 

  • Goto A, Yamada K, Nagoshi H, Terano Y, Omata M (1995) Stress-induced elevation of ouabainlike compound in rat plasm and adrenal. Hypertension 26:1173–1176

    PubMed  CAS  Google Scholar 

  • Green HJ, Duhamel TA, Holloway GP, Moule JW, Ouyang J, Ranney D, Tupling AR (2007a) Muscle Na+–K+-ATPase response during 16 h of heavy intermittent cycle exercise. Am J Physiol 293:E523–E530

    CAS  Google Scholar 

  • Green HJ, Duhamel TA, Foley KP, Ouyang J, Smith IC, Stewart RD (2007b) Glucose supplements increase human muscle in vitro Na+–K+-ATPase activity during prolonged exercise. Am J Physiol 293:R354–R362

    CAS  Google Scholar 

  • Green HJ, Duhamel TA, Stewart RD, Tupling AR, Ouyang J (2008) Dissociation between changes in muscle Na+–K+-ATPase isoform abundance and activity with consecutive days of exercise and recovery. Am J Physiol 294:E761–E767

    CAS  Google Scholar 

  • Guillot C, Steinberg JG, Delliaux S, Kipson N, Jammes Y, Badier M (2008) Physiological, histological and biochemical properties of rat skeletal muscles in response to hindlimb suspension. J Electromyogr Kinesiol 18:276–283. doi:10.1016/j.jelekin.2006.10.001

    Article  PubMed  Google Scholar 

  • Huang WH, Askari A (1982) Ca2+-dependent activities of (Na++K+)-ATPase. Arch Biochem Biophys 216:741–750. doi:10.1016/0003-9861(82)90265-X

    Article  PubMed  CAS  Google Scholar 

  • Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of the Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473. doi:10.1161/01.RES.0000181170.87738.f3

    Article  PubMed  CAS  Google Scholar 

  • Inserte J, Garcia-Dorado D, Hernando V, Barba I, Soler-Soler (2006) Ischemic preconditioning prevents calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion. Cardiovasc Res 70:364–373. doi:10.1016/j.cardiores.2006.02.017

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ, Pye D, Palomeo J (2007) The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 102:1664–1670. doi:10.1152/japplphysiol.01102.2006

    Article  PubMed  CAS  Google Scholar 

  • Jones DA (1996) High- and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270. doi:10.1046/j.1365-201X.1996.192000.x

    Article  PubMed  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    PubMed  CAS  Google Scholar 

  • Kristensen M, Rassmussen MK, Juel C (2008) Na+–K+ pump location and translocation during muscle contraction in rat skeletal muscle. Pflugers Arch Eur J Physiol 456:979–989

    Article  CAS  Google Scholar 

  • Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ (2004) Prolonged exercise to fatigue in humans impairs skeletal muscle Na+–K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol 97:1414–1423. doi:10.1152/japplphysiol.00964.2003

    Article  PubMed  CAS  Google Scholar 

  • McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X (2006) N-acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576:279–288. doi:10.1113/jphysiol.2006.115352

    Article  PubMed  CAS  Google Scholar 

  • McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, Cl- disturbances and Na+, K+-pump inactivation: implications for fatigue. J Appl Physiol 104:288–295. doi:10.1152/japplphysiol.01037.2007

    Article  PubMed  CAS  Google Scholar 

  • Mendez J, Keys A (1960) Density and composition of mammalian skeletal muscle. Metab Clin Exp 9:184–199

    CAS  Google Scholar 

  • Mishima T, Yamada T, Sakamoto M, Sugiyama M, Matsunaga S, Wada M (2008) Time ourse of changes in in vitro sarcoplasmic reticulum Ca2+-handling and Na+-K+-ATPase activity during repetitive contractions. Pflugers Arch–Eur J Physiol 456:601–609

    Article  CAS  Google Scholar 

  • Mullis IA, Goodman CA, McKenna MJ (2007) Ouabain inhibition and homogenisation effects on Na+, K+-ATPase activity in rat soleus muscle. In: Second biennial conference on potassium, sodium and the function of heart and skeletal muscle, pp 44. (http://www.myonak.org)

  • Murphy KT, Petersen AC, Goodman C, Gong X, Leppik JA, Garnham AP, Cameron-Smith D, Snow RJ, McKenna MJ (2006a) Prolonged submaximal exercise induces isoform-specific Na+–K+-ATPase mRNA and protein responses in human skeletal muscle. Am J Physiol 290:R414–R424

    CAS  Google Scholar 

  • Murphy RM, Verburg E, Lamb GD (2006b) Ca2+ activation of diffusible and bound pools of μ-calpain in rat skeletal muscle. J Physiol 576:595–612. doi:10.1113/jphysiol.2006.114090

    Article  PubMed  CAS  Google Scholar 

  • Nordsborg N, Goodman C, McKenna MJ, Bangsbo J (2005) Dexamethasone up-regulates skeletal muscle maximal Na+, K+ pump activity by muscle group specific mechanisms in humans. J Physiol 567:583–589. doi:10.1113/jphysiol.2005.087031

    Article  PubMed  CAS  Google Scholar 

  • Norgaard A, Kjeldsen K, Hansen O (1984) Na+ K+-ATPase activity of crude homogenates of rat skeletal muscle as estimated from their K+-dependent 3-O-methylfluoresein phosphatase activity. Biochim Biophys Acta 770:203–209. doi:10.1016/0005-2736(84)90131-7

    Article  PubMed  CAS  Google Scholar 

  • Pattwell DM, Jackson MJ (2004) Contraction-induced oxidants as mediators of adaptation and damage in skeletal muscle. Exerc Sport Sci Rev 32:14–18. doi:10.1097/00003677-200401000-00004

    Article  PubMed  Google Scholar 

  • Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, Cameron-Smith D, McKenna MJ (2005) Depressed Na+–K+-ATPase activity in skeletal muscle at fatigue is correlated with increased Na+–K+-ATPase mRNA expression following intense exercise. Am J Physiol 289:R266–R274

    CAS  Google Scholar 

  • Rasmussen MK, Kristensen M, Juel C (2008) Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity. Acta Physiol 194:67–79

    Article  CAS  Google Scholar 

  • Sandiford SD, Green HJ, Duhamel TA, Perco JG, Schertzer JD, Ouyang J (2004) Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia. J Appl Physiol 96:1767–1775. doi:10.1152/japplphysiol.01273.2003

    Article  PubMed  CAS  Google Scholar 

  • Sandiford SD, Green HJ, Duhamel TA, Schertzer JD, Perco JD, Ouyang J (2005a) Muscle Na–K-pump and fatigue responses to progressive exercise in normoxia and hypoxia. Am J Physiol 289:R441–R449

    CAS  Google Scholar 

  • Sandiford SDE, Green HJ, Ouyang J (2005b) Mechanisms underlying increases in rat soleus Na+–K+-ATPase activity by induced contractions. J Appl Physiol 99:2222–2232. doi:10.1152/japplphysiol.00577.2005

    Article  PubMed  CAS  Google Scholar 

  • Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269:2440–2448. doi:10.1046/j.1432-1033.2002.02911.x

    Article  PubMed  CAS  Google Scholar 

  • Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481

    PubMed  CAS  Google Scholar 

  • Shigekawa M, Pearl LJ (1976) Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations. J Biol Chem 251:6947–6952

    PubMed  CAS  Google Scholar 

  • Sulova Z, Vyskocil F, Stankovicova T, Breier A (1998) Ca2+-induced inhibition of sodium pump: effect on energetic metabolism of mouse diaphragm tissue. Gen Physiol Biophys 17:271–283

    PubMed  CAS  Google Scholar 

  • Verburg E, Murphy RM, Stephenson DG, Lamb GD (2005) Disruption of excitation–contraction coupling and titin by endogenous Ca2+-activated proteases in toad muscle fibres. J Physiol 564:775–790. doi:10.1113/jphysiol.2004.082180

    Article  PubMed  CAS  Google Scholar 

  • Zuo L, Clanton TL (2005) Reactive oxygen species formation in the transition to hypoxia in skeletal muscle. Am J Physiol 289:C207–C216. doi:10.1152/ajpcell.00449.2004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, C.A., Hayes, A. & McKenna, M.J. Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation. Eur J Appl Physiol 105, 575–583 (2009). https://doi.org/10.1007/s00421-008-0937-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0937-x

Keywords

Navigation