Skip to main content
Log in

Acute effect of static exercise on the cardiovascular system: assessment by cardiovascular magnetic resonance

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The acute effect of static exercise on the global dynamics of the cardiovascular system is poorly understood. The use of cardiovascular magnetic resonance (CMR) may be useful for evaluating this effect.

Methods

A total of 12 healthy individuals underwent CMR imaging at rest and while performing a maximal sustained static exercise (weight elevation with both legs). We analyzed the effects on left and right ventricular function, ascending aorta dynamics, and venous capacitance using standard cine and phase-contrast sequences.

Results

We observed excellent reproducibility in the measurements of the images obtained at rest as well as during static exercise. During exercise, we observed reduced left (−35 ± 8 %, p < 0.001) and right (−44 ± 9 %, p < 0.001) ventricle end-diastolic volumes, reduced left (−35 ± 16 %, p < 0.001) and right (−43 ± 8 %, p < 0.001) ventricle end-systolic volumes (both with a significantly greater reduction in the right ventricle), a reduced superior vena cava cross-sectional area (−20 ± 17 %, p = 0.003), and increased left ventricle wall thickness. We estimated that there was an increase in left ventricle contractility. There were no significant changes in the left and right ventricular ejection fractions. During exercise, we noted a tendency toward decreased aortic distensibility and a reduction of ascending aorta systolic expansion.

Conclusions

In healthy individuals, an acute maximal static exercise produced a reduction in the left ventricle, right ventricle, and superior vena cava volumes as well as signs of increased aortic stiffness without increasing left ventricular systolic wall stress. CMR is feasible and useful in evaluating the hemodynamic effects of static exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMR:

Cardiovascular magnetic resonance

LV:

Left ventricle

RV:

Right ventricle

SE:

Static exercise

SVC:

Superior vena cava

References

  • Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, Picard MH, Hutter AM Jr, Wood Mj (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol 104:1121–1128. doi:10.1152/japplphysiol.01170.2007

    Article  PubMed  Google Scholar 

  • Beckers PJ, Denollet J, Possemiers NM, Wuyts FL, Vrints CJ, Conraads VM (2008) Combined endurance-resistance training vs. endurance training in patients with chronic heart failure: a prospective randomized study. Eur Heart J 29:1858–1866. doi:10.1093/eurheartj/ehn222

    Article  PubMed  Google Scholar 

  • Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396. doi:10.1053/euhj.2000.2011

    Article  CAS  PubMed  Google Scholar 

  • Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E (2008) Negative stress echo: further prognostic stratification with assessment of pressure-volume relation. Int J Cardiol 126:258–267. doi:10.1016/j.ijcard.2006.12.093

    Article  CAS  PubMed  Google Scholar 

  • Bonow RO, Cheitlin MD, Crawford MH, Douglas PS (2005) Task Force 3: valvular heart disease. J Am Coll Cardiol 45:1334–1340. doi:10.1016/j.jacc.2005.02.010

    Article  PubMed  Google Scholar 

  • Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar M, Laurent S (1994) Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Physiol 267:H1368–H1376

    CAS  PubMed  Google Scholar 

  • Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R (1997) Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation 96:4286–4297. doi:10.1161/01.CIR.96.12.4286

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH (2011) Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 57:1511–1522. doi:10.1016/j.jacc.2010.12.017

    Article  PubMed  Google Scholar 

  • Claessen G, Claus P, Delcroix M, Bogaert J, La Gerche A, Heidbuchel H (2014) Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study. Am J Physiol Heart Circ Physiol 306:H816–H824. doi:10.1152/ajpheart.00752.2013

    Article  CAS  PubMed  Google Scholar 

  • Cook JN, DeVan AE, Schleifer JL, Anton MM, Cortez-Cooper MY, Tanaka H (2006) Arterial compliance of rowers: implications for combined aerobic and strength training on arterial elasticity. Am J Physiol Heart Circ Physiol 290:H1596–H1600. doi:10.1152/ajpheart.01054.2005

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2:e004473. doi:10.1161/JAHA.112.004473

    Article  PubMed Central  PubMed  Google Scholar 

  • Cortez-Cooper MY, Anton MM, Devan AE, Neidre DB, Cook JN, Tanaka H (2008) The effects of strength training on central arterial compliance in middle-aged and older adults. Eur J Cardiovasc Prev Rehabil 15:149–155. doi:10.1097/HJR.0b013e3282f02fe2

    Article  PubMed  Google Scholar 

  • Haykowsky MJ, Tomczak CR (2014) LV hypertrophy in resistance or endurance trained athletes: the Morganroth hypothesis is obsolete, most of the time. Heart 100:1225–1226. doi:10.1136/heartjnl-2014-306208

    Article  PubMed  Google Scholar 

  • Haykowsky M, Taylor D, Teo K, Quinney A, Humen D (2001) Left ventricular wall stress during leg-press exercise performed with a brief Valsalva maneuver. Chest 119:150–154

    Article  CAS  PubMed  Google Scholar 

  • Hundley WG, Kitzman DW, Morgan TM, Hamilton CA, Darty SN, Stewart KP, Herrington DM, Link KM, Little WC (2001) Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol 38:796–802

    Article  CAS  PubMed  Google Scholar 

  • La Gerche A, Heidbüchel H, Burns AT, Mooney DJ, Taylor AJ, Pfluger HB, Inder WJ, Macisaac AI, Prior DL (2011) Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med Sci Sports Exerc 43:974–981. doi:10.1249/MSS.0b013e31820607a3

    Article  PubMed  Google Scholar 

  • La Gerche A, Claessen G, Van de Bruaene A, Pattyn N, Van Cleemput J, Gewillig M, Bogaert J, Dymarkowski S, Claus P, Heidbuchel H (2013) Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging 6:329–338. doi:10.1161/CIRCIMAGING.112.980037

    Article  PubMed  Google Scholar 

  • Lentini AC, McKelvie RS, McCartney N, Tomlinson CW, MacDougall JD (1993) Left ventricular response in healthy young men during heavy-intensity weight-lifting exercise. J Appl Physiol (1985) 75:2703–2710

    CAS  Google Scholar 

  • Lewis EJ, McKillop A, Banks L (2012) The Morganroth hypothesis revisited: endurance exercise elicits eccentric hypertrophy of the heart. J Physiol 590:2833–2834. doi:10.1113/jphysiol.2011.226217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis GD, Bossone E, Naeije R, Grunig E, Saggar R, Lancellotti P, Ghio S, Varga J, Rajagopalan S, Oudiz R, Rubenfire M (2013) Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128:1470–1479. doi:10.1161/CIRCULATIONAHA.112.000667

    Article  PubMed  Google Scholar 

  • Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    Article  CAS  PubMed  Google Scholar 

  • Luijkx T, Velthuis BK, Backx FJ, Buckens CF, Prakken NH, Rienks R, Mali WP, Cramer MJ (2013) Anabolic androgenic steroid use is associated with ventricular dysfunction on cardiac MRI in strength trained athletes. Int J Cardiol 167:664–668. doi:10.1016/j.ijcard.2012.03.072

    Article  PubMed  Google Scholar 

  • Mellwig KP, van Buuren F, Gohlke-Baerwolf C, Bjornstad HH (2008) Recommendations for the management of individuals with acquired valvular heart diseases who are involved in leisure-time physical activities or competitive sports. Eur J Cardiovasc Prev Rehabil 15:95–103. doi:10.1097/HJR.0b013e3282ef9973

    Article  PubMed  Google Scholar 

  • Miles DS, Owens JJ, Golden JC, Gotshall RW (1987) Central and peripheral hemodynamics during maximal leg extension exercise. Eur J Appl Physiol Occup Physiol 56:12–17

    Article  CAS  PubMed  Google Scholar 

  • Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, Tabata I, Tanaka H (2004) Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation 110:2858–2863. doi:10.1161/01.CIR.0000146380.08401.99

    Article  PubMed  Google Scholar 

  • Morganroth J, Maron BJ, Henry WL, Epstein SE (1975) Comparative left ventricular dimensions in trained athletes. Ann Intern Med 82:521–524

    Article  CAS  PubMed  Google Scholar 

  • Phillips AA, Bredin SS, Cote AT, Drury CT, Warburton DE (2013) Aortic distensibility is reduced during intense lower body negative pressure and is related to low frequency power of systolic blood pressure. Eur J Appl Physiol 113:785–792. doi:10.1007/s00421-012-2489-3

    Article  PubMed  Google Scholar 

  • Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101:336–344

    Article  CAS  PubMed  Google Scholar 

  • Santamore WP, Amoore JN (1994) Buffering of respiratory variations in venous return by right ventricle: a theoretical analysis. Am J Physiol 267:H2163–H2170

    CAS  PubMed  Google Scholar 

  • Segers P, Mahieu D, Kips J, Rietzschel E, De Buyzere M, De Bacquer D, Bekaert S, De Backer G, Gillebert T, Verdonck P, Van Bortel L, Asklepios I (2009) Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension 54:414–420. doi:10.1161/HYPERTENSIONAHA.109.133009

    Article  CAS  PubMed  Google Scholar 

  • Spence AL, Naylor LH, Carter HH, Buck CL, Dembo L, Murray CP, Watson P, Oxborough D, George KP, Green DJ (2011) A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J Physiol 589:5443–5452. doi:10.1113/jphysiol.2011.217125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave R, Atkinson G, George K (2013) Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart 99:1727–1733. doi:10.1136/heartjnl-2012-303465

    Article  PubMed  Google Scholar 

  • Utomi V, Oxborough D, Ashley E, Lord R, Fletcher S, Stembridge M, Shave R, Hoffman MD, Whyte G, Somauroo J, Sharma S, George K (2014) Predominance of normal left ventricular geometry in the male ‘athlete’s heart’. Heart 100:1264–1271. doi:10.1136/heartjnl-2014-305904

    Article  PubMed  Google Scholar 

  • Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, Gulanick M, Laing ST, Stewart KJ, American Heart Association Council on Clinical Cardiology, American Heart Association Council on Nutrition Physical activity, Metabolism, (2007) Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116:572–584. doi:10.1161/CIRCULATIONAHA.107.185214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Maite Martín and Monique Mendoza for their invaluable technical support. This study was supported, in part, by a grant from the Consejo Superior de Deportes, Government of Spain.

Conflict of interest

The authors do not have conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Alegret.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alegret, J.M., Beltrán-Debón, R., La Gerche, A. et al. Acute effect of static exercise on the cardiovascular system: assessment by cardiovascular magnetic resonance. Eur J Appl Physiol 115, 1195–1203 (2015). https://doi.org/10.1007/s00421-015-3101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3101-4

Keywords

Navigation