Skip to main content

Advertisement

Log in

Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Spike-timing-dependent plasticity (STDP) determines the evolution of the synaptic weights according to their pre- and post-synaptic activity, which in turn changes the neuronal activity on a (much) slower time scale. This paper examines the effect of STDP in a recurrently connected network stimulated by external pools of input spike trains, where both input and recurrent synapses are plastic. Our previously developed theoretical framework is extended to incorporate weight-dependent STDP and dendritic delays. The weight dynamics is determined by an interplay between the neuronal activation mechanisms, the input spike-time correlations, and the learning parameters. For the case of two external input pools, the resulting learning scheme can exhibit a symmetry breaking of the input connections such that two neuronal groups emerge, each specialized to one input pool only. In addition, we show how the recurrent connections within each neuronal group can be strengthened by STDP at the expense of those between the two groups. This neuronal self-organization can be seen as a basic dynamical ingredient for the emergence of neuronal maps induced by activity-dependent plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci 30: 79–97

    Article  CAS  PubMed  Google Scholar 

  • Appleby PA, Elliott T (2006) Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 18(10): 2414–2464

    Article  PubMed  Google Scholar 

  • Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630): 278–281

    Article  CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24): 10464–10472

    CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24: 139–166

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity—orientation specificity and binocular interaction in visual-cortex. J Neurosci 2(1): 32–48

    CAS  PubMed  Google Scholar 

  • Boettiger CA, Doupe AJ (2001) Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 31(5): 809–818

    Article  CAS  PubMed  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95(1): 1–19

    Article  CAS  PubMed  Google Scholar 

  • Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16(5): 885–940

    Article  PubMed  Google Scholar 

  • Burkitt AN, Gilson M, van Hemmen JL (2007) Spike-timing-dependent plasticity for neurons with recurrent connections. Biol Cybern 96(5): 533–546

    Article  CAS  PubMed  Google Scholar 

  • Butts DA, Kanold PO, Shatz CJ (2007a) A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol 5(3): 651–661

    Article  CAS  Google Scholar 

  • Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB (2007b) Temporal precision in the neural code and the timescales of natural vision. Nature 449: 92–95

    Article  CAS  PubMed  Google Scholar 

  • Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60(2): 287–305

    Article  PubMed  Google Scholar 

  • Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31: 25–46

    Article  CAS  PubMed  Google Scholar 

  • Câteau H, Kitano K, Fukai T (2008) Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering. Phys Rev E 77(5): 051909

    Article  Google Scholar 

  • Choe Y, Miikkulainen R (1998) Self-organization and segmentation in a laterally connected orientation map of spiking neurons. Neurocomputing 21(1–3): 139–157

    Article  Google Scholar 

  • Dahmen JC, Hartley DE, King AJ (2008) Stimulus-timing-dependent plasticity of cortical frequency representation. J Neurosci 28(50): 13629–13639

    Article  CAS  PubMed  Google Scholar 

  • Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86(3): 1033–1048

    Article  PubMed  Google Scholar 

  • Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol (Lond) 507(1): 237–247

    Article  CAS  Google Scholar 

  • deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci 23: 613–647

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Perrinet L, Thorpe SJ (2001) Networks of integrate-and-fire neurons using rank order coding B: Spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38: 539–545

    Article  Google Scholar 

  • Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in vat barrel cortex. Nat Neurosci 2(12): 1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Elliott T (2003) An analysis of synaptic normalization in a general class of Hebbian models. Neural Comput 15(4): 937–963

    Article  PubMed  Google Scholar 

  • Elliott T, Shadbolt NR (1999) A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves. J Neurosci 19(18): 7951–7970

    CAS  PubMed  Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1): 45–56

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879): 433–438

    Article  CAS  PubMed  Google Scholar 

  • Fusi S (2002) Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. Biol Cybern 87(5–6): 459–470

    Article  PubMed  Google Scholar 

  • Gerstner W, Ritz R, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69(5–6): 503–515

    CAS  PubMed  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595): 76–78

    Article  CAS  PubMed  Google Scholar 

  • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009a) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks I: input selectivity–strengthening correlated input pathways. Biol Cybern 101(2): 81–102

    Article  PubMed  Google Scholar 

  • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009b) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks II: input selectivity–symmetry breaking. Biol Cybern 101(2): 103–114

    Article  PubMed  Google Scholar 

  • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009c) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity. Biol Cybern 101(5–6): 411–426

    Article  PubMed  Google Scholar 

  • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009d) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections. Biol Cybern 101(5–6): 427–444

    Article  PubMed  Google Scholar 

  • Gjorgjieva J, Toyoizumi T, Eglen SJ (2009) Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus. PLoS Comput Biol 5(12): e1000618

    Article  PubMed  Google Scholar 

  • Goodhill GJ (2007) Contributions of theoretical modeling to the understanding of neural map development. Neuron 56(2): 301–311

    Article  CAS  PubMed  Google Scholar 

  • Goodhill GJ, Barrow HG (1994) The role of weight normalization in competitive learning. Neural Comput 6(2): 255–269

    Article  Google Scholar 

  • Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3(11): 2299–2323

    Article  CAS  Google Scholar 

  • Gütig R, Aharonov R, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23(9): 3697–3714

    PubMed  Google Scholar 

  • Hawkes AG (1971) Point spectra of some mutually exciting point processes. J R Statist Soc Ser B 33(3): 438–443

    Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6(11): 877–888

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JA, Martinez LM (2006) Circuits that build visual cortical receptive fields. Trends Neurosci 29: 30–39

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9): 647–658

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in cats visual cortex. J Physiol (Lond) 160(1): 106–164

    Google Scholar 

  • Iglesias J, Eriksson J, Grize F, Tomassini M, Villa A (2005) Dynamics of pruning in simulated large-scale spiking neural networks. Biosystems 79(1–3): 11–20

    Article  PubMed  Google Scholar 

  • Izhikevich EM, Desai NS (2003) Relating STDP to BCM. Neural Comput 15(7): 1511–1523

    Article  PubMed  Google Scholar 

  • Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3(1): 34–42

    Article  CAS  PubMed  Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59(4): 4498–4514

    Article  CAS  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1): 59–69

    Article  Google Scholar 

  • Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S (2008) Correlations and population dynamics in cortical networks. Neural Comput 20(9): 2185–2226

    Article  PubMed  Google Scholar 

  • Leibold C, Kempter R, van Hemmen JL (2002) How spiking neurons give rise to a temporal-feature map: from synaptic plasticity to axonal selection. Phys Rev E 65(5): 051915

    Article  Google Scholar 

  • Lubenov EV, Siapas AG (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58(1): 118–131

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297): 209–213

    Article  CAS  PubMed  Google Scholar 

  • Malsburg CV (1973) Self-organization of orientation sensitive cells in striate cortex. Kybernetik 14(2): 85–100

    Article  PubMed  Google Scholar 

  • Marinaro M, Scarpetta S, Yoshioka M (2007) Learning of oscillatory correlated patterns in a cortical network by a STDP-based learning rule. Math Biosci 207(2): 322–335

    Article  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297): 213–215

    Article  CAS  PubMed  Google Scholar 

  • Masquelier T, Guyonneau R, Thorpe SJ (2008) Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1): e1377

    Article  PubMed  Google Scholar 

  • Massoulie L (1998) Stability results for a general class of interacting point processes dynamics, and applications. Stoch Proc Appl 75(1): 1–30

    Article  Google Scholar 

  • Meffin H, Besson J, Burkitt AN, Grayden DB (2006) Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity. Phys Rev E 73(4): 041911

    Article  CAS  Google Scholar 

  • Miller KD (1996) Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17(3): 371–374

    Article  CAS  PubMed  Google Scholar 

  • Miller KD, Mackay DJC (1994) The role of constraints in Hebbian learning. Neural Comput 6(1): 100–126

    Article  Google Scholar 

  • Moreno-Bote R, Renart A, Parga N (2008) Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons. Neural Comput 20(7): 1651–1705

    Article  PubMed  Google Scholar 

  • Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19(6): 1437–1467

    Article  PubMed  Google Scholar 

  • Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike timing. Biol Cybern 98(6): 459–478

    Article  PubMed  Google Scholar 

  • Neves G, Cooke SF, Bliss TVP (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9: 65–75

    Article  CAS  PubMed  Google Scholar 

  • Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38): 9673–9682

    Article  CAS  PubMed  Google Scholar 

  • Pfister JP, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput 18(6): 1318–1348

    Article  PubMed  Google Scholar 

  • Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD (2010) The asynchronous state in cortical circuits. Science 327(5965): 587–590

    Article  CAS  PubMed  Google Scholar 

  • Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93(5): 2600–2613

    Article  PubMed  Google Scholar 

  • Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33(3): 439–452

    Article  CAS  PubMed  Google Scholar 

  • Senn W (2002) Beyond spike timing: the role of nonlinear plasticity and unreliable synapses. Biol Cybern 87(5–6): 344–355

    Article  PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10): 3870–3896

    CAS  PubMed  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6): 1149–1164

    Article  PubMed  Google Scholar 

  • Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32(2): 339–350

    Article  CAS  PubMed  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9): 919–926

    Article  CAS  PubMed  Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex: a review of models. Network 7(2): 161–247

    Article  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7(7): 719–725

    Article  CAS  PubMed  Google Scholar 

  • van Hemmen JL (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds), Handbook of biological physics, vol 4. Neuro-informatics and neural modelling. Elsevier, Amsterdam, pp 771–823

  • van Rossum MCW, Turrigiano GG (2001) Correlation based learning from spike timing dependent plasticity. Neurocomputing 38: 409–415

    Article  Google Scholar 

  • van Rossum MCW, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23): 8812–8821

    PubMed  Google Scholar 

  • Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8(2): 187–193

    Article  CAS  PubMed  Google Scholar 

  • Wenisch OG, Noll J, van Hemmen JL (2005) Spontaneously emerging direction selectivity maps in visual cortex through STDP. Biol Cybern 93(4): 239–247

    Article  PubMed  Google Scholar 

  • Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22: 29–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits. Nat Neurosci 4: 1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Zou Q, Destexhe A (2007) Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations. Biol Cybern 97(1): 81–97

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Gilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilson, M., Burkitt, A.N., Grayden, D.B. et al. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence. Biol Cybern 103, 365–386 (2010). https://doi.org/10.1007/s00422-010-0405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0405-7

Keywords

Navigation