Skip to main content
Log in

Intermittent control: a computational theory of human control

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as “continuous observation, intermittent action”. Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai Y, Tasaka Y, Nomura K, Nomura T, Casadio M, Morasso P (2009) A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 4(7): e6169

    Article  PubMed  Google Scholar 

  • Baron S, Kleinman DL (1969) The human as an optimal controller and information processor. IEEE Trans Man-Machine Syst 10(1): 0 9–17

    Article  Google Scholar 

  • Baron S, Kleinman DL, Levison WH (1970) An optimal control model of human response part II: prediction of human performance in a complex task. Automatica 6(3): 371–383

    Article  Google Scholar 

  • Barry S (1979) Functional integration and quantum physics. Academic Press, New York

    Google Scholar 

  • Barto AG, Fagg AH, Sitkoff N, Houk JC (1999) A cerebellar model of timing and prediction in the control of reaching. Neural Comput 11(3): 565–594

    Article  PubMed  CAS  Google Scholar 

  • Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578(Pt 2): 387–396

    PubMed  CAS  Google Scholar 

  • Bays PM, Wolpert DM, Flanagan JR (2005) Perception of the consequences of self-action is temporally tuned and event driven. Curr Biol 15(12): 1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Bekey GA (1962) The human operator as a sampled-data system. IRE Trans Human Factors Electron HFE-3(2): 43–51

    Article  Google Scholar 

  • Ben-Itzhak S, Karniel A (2008) Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput 20(3): 779–812

    Article  PubMed  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81(1): 39–60

    Article  PubMed  CAS  Google Scholar 

  • Burdet E, Milner TE (1998) Quantization of human motions and learning of accurate movements. Biol Cybern 78(4): 307–318

    Article  PubMed  CAS  Google Scholar 

  • Bye RT, Neilson PD (2008) The BUMP model of response planning: variable horizon predictive control accounts for the speed-accuracy tradeoffs and velocity profiles of aimed movement. Hum Mov Sci 27(5): 771–798

    Article  PubMed  Google Scholar 

  • Craik KJW (1947) Theory of the human operator in control systems. I. The operator as an engineering system. Br J Psychol Gen Sect 38(Pt 2): 56–61

    PubMed  CAS  Google Scholar 

  • Craik KJW (1948) Theory of the human operator in control systems. II: man as an element in a control system. Br J Psychol Gen Sect 38(Pt 3): 142–148

    PubMed  CAS  Google Scholar 

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in the motor system: a short review. J Neural Eng 2(3): S313–S319

    Article  PubMed  Google Scholar 

  • Dean P, Porrill J (2008) Adaptive-filter models of the cerebellum: computational analysis. Cerebellum 7(4): 567–571

    Article  PubMed  Google Scholar 

  • Doeringer JA, Hogan N (1998) Serial processing in human movement production. Neural Netw 11(7–8): 1345–1356

    Article  PubMed  Google Scholar 

  • Estrada T, Antsaklis PJ (2008) Stability of discrete-time plants using model-based control with intermittent feedback. In: Proceedings of the 16th Mediterranean Conference on Control and Automation, June 2008, pp 1130–1136

  • Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478(Pt 1): 173–186

    PubMed  Google Scholar 

  • Franklin GF, Powell JD, Emami-Naeini A (1994) Feedback control of dynamic systems, 3rd edn. Addison-Wesley, Boston

    Google Scholar 

  • Gawthrop PJ (2002) Physical model-based intermittent predictive control. In: Kaczorek T (ed) Proceedings of the 8th IEEE International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, September 2002, pp 707–712

  • Gawthrop PJ (2004) Intermittent constrained predictive control of mechanical systems. In: Petersen IR (ed) Proceedigns of the 3rd IFAC Symposium on Mechatronic Systems, Manly, Australia

  • Gawthrop PJ (2009) Frequency domain analysis of intermittent control. Proc Inst Mech Eng Pt I: J Syst Control Eng 223(5): 591–603

    Article  Google Scholar 

  • Gawthrop PJ (2010) Act-and-wait and intermittent control: some comments. IEEE Trans Control Syst Technol 18(5): 1195–1198

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2006) Intermittent predictive control of an inverted pendulum. Control Eng Pract 14(11): 1347–1356

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2007) Intermittent model predictive control. Proc Inst Mech Eng Pt I: J Syst Control Eng 221(7): 1007–1018

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2009) Event-driven intermittent control. Int J Control 82(12): 2235–2248

    Article  Google Scholar 

  • Gawthrop P, Loram I, Lakie M (2009) Predictive feedback in human simulated pendulum balancing. Biol Cybern 101(2): 131–146

    Article  PubMed  Google Scholar 

  • Gollee H, Mamma A, Loram I, Gawthrop PJ (2010) Frequency-domain identification of the human controller. Unpublished ms

  • Goodwin GC, Graebe SF, Salgado ME (2001) Control system design. Prentice Hall, Englewood, NJ

    Google Scholar 

  • Hanneton S, Berthoz A, Droulez J, Slotine JJ (1997) Does the brain use sliding variables for the control of movements?. Biol Cybern 77(6): 381–393

    Article  PubMed  CAS  Google Scholar 

  • Hoff B, Arbib MA (1993) Models of trajectory formation and temporal interaction of reach and grasp. J Mot Behav 25(3): 175–192

    Article  PubMed  Google Scholar 

  • Insperger T (2006) Act-and-wait concept for continuous-time control systems with feedback delay. IEEE Trans Control Syst Technol 14(5): 974–977

    Article  Google Scholar 

  • Karniel A, Inbar GF (1997) A model for learning human reaching movements. Biol Cybern 77(3): 173–183

    Article  PubMed  CAS  Google Scholar 

  • Kleinman D (1969) Optimal control of linear systems with time-delay and observation noise. IEEE Trans Autom Control 14(5): 524–527

    Article  Google Scholar 

  • Kleinman DL, Baron S, Levison WH (1970) An optimal control model of human response. Part I: theory and validation. Automatica 6(3): 357–369

    Article  Google Scholar 

  • Kwakernaak H, Sivan R (1972) Linear optimal control systems. Wiley, New York

    Google Scholar 

  • Levison WH, Baron S, Kleinman DL (1969) A model for human controller remnant. IEEE Trans Man-Machine Syst 10(4): 101–108

    Article  Google Scholar 

  • Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Philos Trans R Soc B: Biol Sci 364(1525): 1897–1905

    Article  CAS  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10(10): 1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Häusser Ml (2005) Bistability of cerebellar purkinje cells modulated by sensory stimulation. Nat Neurosci 8(2): 202–211

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M (2002) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540(Pt 3): 1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005a) Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Physiol 564(Pt 1): 295–311

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005b) Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced. J Physiol 564(Pt 1): 281–293

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M, Gawthrop PJ (2009) Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control?. J Physiol 587(Pt 6): 1343–1365

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco

    Google Scholar 

  • Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93(1): 189–200

    Article  PubMed  Google Scholar 

  • McLeod P (1977) Parallel processing and the psychological refractory period. Acta Psychol 41(5): 381–396

    Article  Google Scholar 

  • McRuer D (1980) Human dynamics in man-machine systems. Automatica 16(3): 237–253

    Article  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9(8): 1265–1279

    Article  PubMed  Google Scholar 

  • Miall RC, King D (2008) State estimation in the cerebellum. Cerebellum 7(4): 572–576

    Article  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1993a) Intermittency in human manual tracking tasks. J Mot Behav 25(1): 53–63

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993b) Is the cerebellum a Smith predictor. J Mot Behav 25(3): 203–216

    Article  PubMed  CAS  Google Scholar 

  • Navas F, Stark L (1968) Sampling or intermittency in hand control system dynamics. Biophys J 8(2): 252–302

    Article  PubMed  CAS  Google Scholar 

  • Navon D, Miller J (2002) Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cogn Psychol 44(3): 193–251

    Article  PubMed  Google Scholar 

  • Neilson PD (1999) Influence of intermittency and synergy on grasping. Motor Control 3(3):280–284 (discussion 316–25)

    Google Scholar 

  • Neilson PD, Neilson MD (1999) A neuroengineering solution to the optimal tracking problem. Hum Mov Sci 18(2–3): 155–183

    Article  Google Scholar 

  • Neilson PD, Neilson MD (2005) An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control. J Neural Eng 2(3): S279–S312

    Article  PubMed  Google Scholar 

  • Neilson PD, Neilson MD, O’Dwyer NJ (1988) Internal models and intermittency: a theoretical account of human tracking behavior. Biol Cybern 58(2): 101–112

    Article  PubMed  CAS  Google Scholar 

  • Novak KE, Miller LE, Houk JC (2002) The use of overlapping submovements in the control of rapid hand movements. Exp Brain Res 144(3): 351–364

    Article  PubMed  CAS  Google Scholar 

  • Oytam Y, Neilson PD, O’Dwyer NJ (2005) Degrees of freedom and motor planning in purposive movement. Hum Mov Sci 24(5–6): 710–730

    Article  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88(3): 1097–1118

    PubMed  CAS  Google Scholar 

  • Pew RW, Duffendack JC, Fensch LK (1967) Sine-wave tracking revisited. IEEE Trans Human Factors Electron HFE-8(2): 130–134

    Article  Google Scholar 

  • Ronco E, Arsan T, Gawthrop PJ (1999) Open-loop intermittent feedback control: practical continuous-time GPC. IEE Proc Part D: Control Theory Appl 146(5): 426–434

    Article  Google Scholar 

  • Shadmehr R, Wise SP (2005) Computational neurobiology of reaching and pointing: a foundation for motor learning. MIT Press, Cambridge

    Google Scholar 

  • Smith MC (1967) Theories of the psychological refractory period. Psychol Bull 67(3): 202–213

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Miall RC (2009) Using predictive motor control processes in a cognitive task: behavioral and neuroanatomical perspectives. Adv Exp Med Biol 629: 337–354

    Article  PubMed  Google Scholar 

  • Telford CW (1931) The refractory phase of voluntary and associative responses. J Exp Psychol 14(1): 1–36

    Article  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11): 1226–1235

    Article  PubMed  CAS  Google Scholar 

  • van der Kooij H, de Vlugt E (2007) Postural responses evoked by platform pertubations are dominated by continuous feedback. J Neurophysiol 98(2): 730–743

    Article  PubMed  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80(5): 299–308

    Article  PubMed  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, van der Helm F (2001) An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biol Cybern 84(2): 103–115

    Article  PubMed  Google Scholar 

  • Vince MA (1948) The intermittency of control movements and the psychological refractory period. Br J Psychol Gen Sect 38(Pt 3): 149–157

    PubMed  CAS  Google Scholar 

  • Welch TDJ, Ting LH (2008) A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99(2): 1032–1038

    Article  PubMed  Google Scholar 

  • Welford AT (1967) Single-channel operation in the brain. Acta Psychol (Amst) 27: 5–22

    Article  CAS  Google Scholar 

  • Wickens CD, Hollands JG (2000) Engineering psychology and human performance, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269(5232): 1880–1882

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9): 338–347

    Article  PubMed  CAS  Google Scholar 

  • Woodworth R (1899) The accuracy of voluntary movement. Psychol Rev 3: 1–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gawthrop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawthrop, P., Loram, I., Lakie, M. et al. Intermittent control: a computational theory of human control. Biol Cybern 104, 31–51 (2011). https://doi.org/10.1007/s00422-010-0416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0416-4

Keywords

Navigation