Skip to main content

Advertisement

Log in

Frequency-domain identification of the human controller

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

System identification techniques applied to experimental human-in-the-loop data provide an objective test of three alternative control–theoretical models of the human control system: non-predictive control, predictive control, and intermittent predictive control. A two-stage approach to the identification of a single-input single-output control system is used: first, the closed-loop frequency response is derived using the periodic property of the experimental data, followed by the fitting of a parametric model. While this approach is well-established for non-predictive and predictive control, it is here used for the first time with intermittent predictive control. This technique is applied to data from experiments with human volunteers who use one of two control strategies, focusing either on position or on velocity, to manually control a virtual, unstable load which requires sustained feedback to maintain position or low velocity. The results show firstly that the non-predictive controller does not fit the data as well as the other two models, and secondly that the predictive and intermittent predictive controllers provide equally good models which cannot be distinguished using this approach. Importantly, the second observation implies that sustained visual manual control is compatible with intermittent control, and that previous results suggesting a continuous control model for the human control system do not rule out intermittent control as an alternative hypothesis. Thirdly, the parameters identified reflect the control strategy adopted by the human controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 93: 309–322

    Article  PubMed  CAS  Google Scholar 

  • Baron S, Kleinman DL, Levison WH (1970) An optimal control model of human response. Part II: prediction of human performance in a complex task. Automatica 6: 371–383

    Article  Google Scholar 

  • Bye RT, Neilson PD (2008) The BUMP model of response planning: variable horizon predictive control accounts for the speed-accuracy tradeoffs and velocity profiles of aimed movement. Hum Movement Sci 27(5): 771–798

    Article  Google Scholar 

  • Craik KJ (1947) Theory of human operators in control systems. I. The operator as an engineering system. Brit J Psychol 38: 56–61

    CAS  Google Scholar 

  • Craik KJ (1947) Theory of human operators in control systems II. Man as an element in a control system. Br J Psychol 38: 142–148

    Google Scholar 

  • Gawthrop P, Loram I, Lakie M (2009) Predictive feedback in human simulated pendulum balancing. Biol Cybern 101(2): 131–146

    Article  PubMed  Google Scholar 

  • Gawthrop P, Loram I, Lakie M, Gollee H (2011) Intermittent control: a computational theory of human control. Biol Cybern 104(1–2): 31–51

    Article  PubMed  Google Scholar 

  • Gawthrop PJ (2002) Physical model-based intermittent predictive control. In: Kaczorek T (ed) Proceedings of 8th international conference on methods & models in automation & robotics, pp 707–712, Szczecin

  • Gawthrop PJ (2004) Intermittent constrained predictive control of mechanical systems. In: Petersen IR (ed) Proceedings of 3rd IFAC symposium on mechatronic systems, Manly, 2004

  • Gawthrop PJ (2009) Frequency domain analysis of intermittent control. Proc I Mech Eng Pt I: J Syst Contr Eng 223(5): 591–603

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2006) Intermittent predictive control of an inverted pendulum. Contr Eng Pract 14(11): 1347–1356

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2007) Intermittent model predictive control. Proc I Mech Eng Pt I: J Syst Contr Eng 221(7): 1007–1018

    Article  Google Scholar 

  • Johansson R., Magnusson M., Akesson M. (1988) Identification of human postural dynamics. IEEE Trans Biomed Eng 35(10): 858–869

    Article  PubMed  CAS  Google Scholar 

  • Kleinman DL (1969) Optimal control of linear systems with time-delay and observation noise. IEEE Trans Autom Contr 14(5): 524–527

    Article  Google Scholar 

  • Kleinman DL, Baron S, Levison WH (1970) An optimal control model of human response. Part I: theory and validation. Automatica 6: 357–369

    Article  Google Scholar 

  • Kwakernaak H, Sivan R (1972) Linear optimal control systems. Wiley, New York

    Google Scholar 

  • Levison WH, Baron S, Kleinman DL (1969) A model for human controller remnant. IEEE Trans Man-Machine Syst 10(4): 101–108

    Article  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10: 1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Gollee H, Lakie M, Gawthrop PJ (2011) Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological?. J Physiol 589(2): 307–324

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M, Gawthrop PJ (2009) Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control?. J Physiol 587(6): 1343–1365

    Article  PubMed  CAS  Google Scholar 

  • Masani K, Vette AH, Popovic MR (2006) Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 23(2): 164–172

    Article  PubMed  Google Scholar 

  • Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93: 189–200

    Article  PubMed  Google Scholar 

  • McRuer D. (1980) Human dynamics in man-machine systems. Automatica 16: 237–253

    Article  Google Scholar 

  • Navas F, Stark L (1968) Sampling or intermittency in hand control system dynamics. J Biophys 8(2): 252–302

    Article  CAS  Google Scholar 

  • Neilson PD (1999) Influence of intermittency and synergy on grasping. Motor Control 3: 280–284

    PubMed  CAS  Google Scholar 

  • Neilson PD, Neilson MD (1999) A neuroengineering solution to the optimal tracking problem. Hum Movement Sci 18(2–3): 155–183

    Article  Google Scholar 

  • Neilson PD, Neilson MD (2005) An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control. J Neural Eng 2(3): S279–S312

    Article  PubMed  Google Scholar 

  • Neilson PD, Neilson MD, O’Dwyer NJ (1988) Internal models and intermittency: a theoretical account of human tracking behaviour. Biol Cybern 58: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer series in operations research, 2nd edn. Springer Verlag, New York

  • Oytam Y, Neilson PD, O’Dwyer NJ (2005) Degrees of freedom and motor planning in purposive movement. Hum Movement Sci 24(5–6): 710–730

    Article  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88(3): 1097–1118

    PubMed  CAS  Google Scholar 

  • Pintelon R, Schoukens J (2001) System identification. A frequency domain approach. IEEE Press, New York

  • Pintelon R, Schoukens J, Rolain Y (2008) Frequency domain approach to continuous-time identification: some practical aspects. In: Garnier H, Wang L (eds) Identification of continuous-time models from sampled data, Chapter 8, pp 215–248. Springer, New York

  • Ronco E, Arsan T, Gawthrop PJ (1999) Open-loop intermittent feedback control: practical continuous-time GPC. IEE Proc Part D: Contr Theory Appl 146(5): 426–434

    Article  Google Scholar 

  • van der Kooij H, de Vlugt E (2007) Postural responses evoked by platform pertubations are dominated by continuous feedback. J Neurophysiol 98: 730–743

    Article  PubMed  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80(5): 299–308

    Article  PubMed  Google Scholar 

  • van der Kooij H, Peterka RJ (2011) Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise. J Comput Neurosci 30(3): 759–778

    Article  PubMed  Google Scholar 

  • van der Kooij H, van Asseldonk E, van der Helm FCT (2005) Comparison of different methods to identify and quantify balance control. J Neurosci Methods 145(1–2): 175–203

    Article  PubMed  Google Scholar 

  • Vince MA (1948) The intermittency of control movements and the psychological refractory period. Brit J Psychol 38: 149–157

    CAS  Google Scholar 

  • Welch TDJ, Ting LH (2008) A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99: 1032–1038

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Gollee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gollee, H., Mamma, A., Loram, I.D. et al. Frequency-domain identification of the human controller. Biol Cybern 106, 359–372 (2012). https://doi.org/10.1007/s00422-012-0503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0503-9

Keywords

Navigation