Skip to main content

Advertisement

Log in

Decreased renal accumulation of aminoglycoside reflects defective receptor-mediated endocytosis in cystic fibrosis and Dent’s disease

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The clinical use of aminoglycoside (AG) antibiotics is limited by their renal toxicity, which is caused by drug accumulation in proximal tubule (PT) cells. Clinical studies reported that renal clearance of AG is enhanced in cystic fibrosis (CF) patients, which might reflect the role of CFTR in PT cell endocytosis. In order to assess the role of chloride transporters on the renal handling of AG, we investigated gentamicin uptake and renal accumulation in mice lacking functional CFTR (Cftr ∆F/∆F) or knock-out for the Cl/H+ exchanger ClC-5 (Clcn5 Y/−). The latter represent a paradigm of PT dysfunction and defective receptor-mediated endocytosis. As compared with controls, Cftr ∆F/∆F and Clcn5 Y/ mice showed a 15% to 85% decrease in gentamicin accumulation in the kidney, respectively, in absence of renal failure. Studies on primary cultures of Cftr ∆F/∆F and Clcn5 Y/− mouse PT cells confirmed the reduction in gentamicin uptake, although colocalization with endosomes and lysosomes was maintained. Quantification of endocytosis in PT cells revealed that gentamicin, similar to albumin, preferentially binds to megalin. The functional loss of ClC-5 or CFTR was reflected by a decrease of the endocytic uptake of gentamicin, with a more pronounced effect in cells lacking ClC-5. These results support the concept that CFTR, as well as ClC-5, plays a relevant role in PT cell endocytosis. They also demonstrate that the functional loss of these two chloride transporters is associated with impaired uptake of AG in PT cells, reflected by a decreased renal accumulation of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Appel GB (1990) Aminoglycoside nephrotoxicity. Am J Med 88:165–209

    Article  Google Scholar 

  2. Bockenhauer D, Hug MJ, Kleta R (2009) Cystic fibrosis, aminoglycoside treatment and acute renal failure: the not so gentle micin. Pediatr Nephrol 24:925–928

    Article  PubMed  Google Scholar 

  3. Cheng SH, Gregory RJ, Marshall J et al (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    Article  PubMed  CAS  Google Scholar 

  4. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    PubMed  CAS  Google Scholar 

  5. Christensen EI, Devuyst O, Dom G et al (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100:8472–8477

    Article  PubMed  CAS  Google Scholar 

  6. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039–1048

    Article  PubMed  CAS  Google Scholar 

  7. Devuyst O, Christie PT, Courtoy PJ et al (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257

    Article  PubMed  CAS  Google Scholar 

  8. Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28

    Google Scholar 

  9. Hawk CT, Leary SL, Morris TH (2005) Formulary for laboratory animals, 3rd edn. Blackwell, Ames

    Google Scholar 

  10. Fujiwara K, Shin M, Matsunaga H et al (2009) Light-microscopy immunocytochemistry for gentamicin and its use for studying uptake of the drug in kidney. Antimicrob Agents Chemother 53:3302–3307

    Article  PubMed  CAS  Google Scholar 

  11. Jouret F, Bernard A, Hermans C et al (2007) Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney. J Am Soc Nephrol 18:707–718

    Article  PubMed  CAS  Google Scholar 

  12. Jouret F, Devuyst O (2009) CFTR and detective endocytosis: new insights in the renal phenotype of cystic fibrosis. Pflugers Arch 457:1227–1236

    Article  PubMed  CAS  Google Scholar 

  13. Jusko WJ, Mosovich LL, Gerbracht LM, Mattar ME, Yaffe SJ (1975) Enhanced renal excretion of dicloxacillin in patients with cystic fibrosis. Pediatrics 56:1038–1044

    PubMed  CAS  Google Scholar 

  14. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79:33–45

    Article  PubMed  CAS  Google Scholar 

  15. Moestrup SK, Cui S, Vorum H et al (1995) Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Investig 96:1404–1413

    Article  PubMed  CAS  Google Scholar 

  16. Nagai J, Takano M (2004) Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokin 19:159–170

    Article  CAS  Google Scholar 

  17. Nagai J, Tanaka H, Nakanishi N et al (2001) Role of megalin in renal handling of aminoglycosides. Am J Physiol Ren Physiol 281:F337–F344

    CAS  Google Scholar 

  18. Nolin TD, Himmelfarb J (2010) Mechanisms of drug induced nephrotoxicity. Handb Exp Pharmacol 196:111–130

    Article  PubMed  CAS  Google Scholar 

  19. Persu A, Devuyst O, Lannoy N et al (2000) CF gene and cystic fibrosis transmembrane conductance regulator expression in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 11:2285–2296

    PubMed  CAS  Google Scholar 

  20. Piwon N, Günther W, Schwake M, Bösl MR, Jentsch TJ (2000) ClC-5 Cl channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  PubMed  CAS  Google Scholar 

  21. Reed AA, Loh NY, Terryn S et al (2010) CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent’s disease. Am J Physiol 298:F365–F380

    Article  CAS  Google Scholar 

  22. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. New Eng J Med 352:1992–2001

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz C, Hilpert J, Jacobsen C et al (2002) Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 277:618–622

    Article  PubMed  CAS  Google Scholar 

  24. Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP (2008) Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 13:11–32

    Article  PubMed  CAS  Google Scholar 

  25. Soulsby N, Greville H, Coulthard K et al (2009) Renal dysfunction in cystic fibrosis: is there cause of concern? Pediatr Pulmonol 44:947–953

    Article  PubMed  Google Scholar 

  26. Susanto M, Benet LZ (2002) Can the enhanced renal clearance of antibiotics in cystic fibrosis patients be explained by P-glycoprotein transport? Pharm Res 19:457–462

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka K, Terryn S, Geffers L, Garbay S, Pontoglio M, Devuyst O (2010) The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule. Am J Physiol Ren Physiol 299:F1339–F1347

    Article  CAS  Google Scholar 

  28. Tauris J, Christensen EI, Nykjaer A et al (2009) Cubilin and megalin co-localize in the neonatal inner ear. Audiol Neurootol 14:267–278

    Article  PubMed  CAS  Google Scholar 

  29. Terryn S, Jouret F, Vandenabeele F et al (2007) A primary culture of mouse proximal tubular cells, established on collagen-coated membranes. Am J Physiol 293:F476–F485

    Article  CAS  Google Scholar 

  30. Touw DJ (1998) Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis. Pharm World Sci 20:149–160

    Article  PubMed  CAS  Google Scholar 

  31. Van Doorninck JH, French PJ, Verbeek E et al (1995) A mouse model of cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. EMBO J 14:4403–4411

    PubMed  Google Scholar 

  32. Wang SS, Devuyst O, Courtoy PJ et al (2000) Mice lacking renal chloride channel, ClC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with a defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    Article  PubMed  CAS  Google Scholar 

  33. Zietse R, Zoutendijk R, Hoorn EJ (2009) Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol 5:193–202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Profs. R. Beauwens, J-J. Cassiman, and H. R. de Jonge for help and support in these studies, and Mrs. Y. Cnops of excellent technical assistance.

The study was supported by the Belgian agencies FNRS and FRSM (3.4.592.06F), the Foundation Alphonse and Jean Forton, a Concerted Research Action (10/15-029), an Inter-university Attraction Pole (IUAP P6/05), the Programme d’excellence Marshall DIANE (Région Wallone), the EUNEFRON (FP7, GA#201590) program of the European Community, and the National Centre of Competence in Research (NCCR) Kidney. CH is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Devuyst or Sara Terryn.

Additional information

Olivier Devuyst and Sara Terryn should be considered as joint senior/corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raggi, C., Fujiwara, K., Leal, T. et al. Decreased renal accumulation of aminoglycoside reflects defective receptor-mediated endocytosis in cystic fibrosis and Dent’s disease. Pflugers Arch - Eur J Physiol 462, 851–860 (2011). https://doi.org/10.1007/s00424-011-1026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1026-2

Keywords

Navigation