Skip to main content

Advertisement

Log in

P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Luminal nucleotide stimulation is known to reduce Na+ transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na+-Cl cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca2+ transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca2+ transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca2+ concentration ([Ca2+]i) may control NCC transcription, we overexpressed the Ca2+-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca2+. Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from −1 to −2,200 bp was not regulated by changes in [Ca2+]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca2+ signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca2+ concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP/UTP:

Adenosine-5′-triphosphate/uridine-5′-triphosphate

[Ca2+]e :

Extracellular Ca2+ concentration

[Ca2+]i :

Intracellular Ca2+ concentration

DCT:

Distal convoluted tubule

mDCT:

Mouse DCT

EGTA-AM:

Ethylene glycol tetra (acetoxymethyl ester)

FITC:

Fluorescein isothiocyanate

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

NCC:

Na+-Cl cotransporter

nCaRE:

Negative calcium response element

PLC:

Phospholipase C

PV:

Parvalbumin

TRPM6:

Transient receptor potential cation channel, subfamily M, member 6

References

  1. Bailey MA, Hillman KA, Unwin RJ (2000) P2 receptors in the kidney. J Auton Nerv Syst 81(1–3):264–270

    Article  PubMed  CAS  Google Scholar 

  2. Banderali U, Brochiero E, Lindenthal S, Raschi C, Bogliolo S, Ehrenfeld J (1999) Control of apical membrane chloride permeability in the renal A6 cell line by nucleotides. J Physiol 519(Pt 3):737–751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81(2):179–183

    Article  PubMed  CAS  Google Scholar 

  4. Belge H, Gailly P, Schwaller B, Loffing J, Debaix H, Riveira-Munoz E, Beauwens R, Devogelaer JP, Hoenderop JG, Bindels RJ, Devuyst O (2007) Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci U S A 104(37):14849–14854. doi:10.1073/pnas.0702810104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Bidet M, De Renzis G, Martial S, Rubera I, Tauc M, Poujeol P (2000) Extracellular ATP increases [CA(2+)](i) in distal tubule cells. I. Evidence for a P2Y2 purinoceptor. Am J Physiol Renal Physiol 279(1):F92–F101

    PubMed  CAS  Google Scholar 

  6. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797. doi:10.1152/physrev.00043.2006

    Article  PubMed  CAS  Google Scholar 

  7. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.112797

    Article  PubMed  CAS  Google Scholar 

  8. Dai LJ, Kang HS, Kerstan D, Ritchie G, Quamme GA (2001) ATP inhibits Mg(2+) uptake in MDCT cells via P2X purinoceptors. Am J Physiol Renal Physiol 281(5):F833–F840

    PubMed  CAS  Google Scholar 

  9. Ellison DH, Brooks VL (2011) Renal nerves, WNK4, glucocorticoids, and salt transport. Cell Metab 13(6):619–620. doi:10.1016/j.cmet.2011.05.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Fuchs S, Philippe J, Corvol P, Pinet F (2003) Implication of Ref-1 in the repression of renin gene transcription by intracellular calcium. J Hypertens 21(2):327–335. doi:10.1097/01.hjh.0000052414.12292.ef

    Article  PubMed  CAS  Google Scholar 

  11. Gailly P (1998) Ca2+ entry in CHO cells, after Ca2+ stores depletion, is mediated by arachidonic acid. Cell Calcium 24(4):293–304

    Article  PubMed  CAS  Google Scholar 

  12. Gesek FA, Friedman PA (1992) Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells. J Clin Investig 90(2):429–438. doi:10.1172/JCI115878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gitelman HJ, Graham JB, Welt LG (1966) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79:221–235

    PubMed  CAS  Google Scholar 

  14. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233(2):309–319

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. doi:10.1038/nrg2936

    Google Scholar 

  16. Ikura M, Osawa M, Ames JB (2002) The role of calcium-binding proteins in the control of transcription: structure to function. BioEssays 24(7):625–636. doi:10.1002/bies.10105

    Article  PubMed  CAS  Google Scholar 

  17. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748. doi:10.1105/tpc.106.042713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kishore BK, Ginns SM, Krane CM, Nielsen S, Knepper MA (2000) Cellular localization of P2Y(2) purinoceptor in rat renal inner medulla and lung. Am J Physiol Renal Physiol 278(1):F43–F51

    PubMed  CAS  Google Scholar 

  19. Klar J, Sigl M, Obermayer B, Schweda F, Kramer BK, Kurtz A (2005) Calcium inhibits renin gene expression by transcriptional and posttranscriptional mechanisms. Hypertension 46(6):1340–1346. doi:10.1161/01.HYP.0000192025.86189.46

    Article  PubMed  CAS  Google Scholar 

  20. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64(4):785–795. doi:10.1124/mol.64.4.785

    Article  PubMed  CAS  Google Scholar 

  21. Lazarowski ER, Harden TK (1999) Quantitation of extracellular UTP using a sensitive enzymatic assay. Br J Pharmacol 127(5):1272–1278. doi:10.1038/sj.bjp.0702654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Lazarowski ER, Rochelle LG, O'Neal WK, Ribeiro CM, Grubb BR, Zhang V, Harden TK, Boucher RC (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther 297(1):43–49

    PubMed  CAS  Google Scholar 

  23. Lehrmann H, Thomas J, Kim SJ, Jacobi C, Leipziger J (2002) Luminal P2Y2 receptor-mediated inhibition of Na+ absorption in isolated perfused mouse CCD. J Am Soc Nephrol 13(1):10–18

    PubMed  CAS  Google Scholar 

  24. Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284(3):F419–F432. doi:10.1152/ajprenal.00075.2002

    PubMed  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  26. Lu M, MacGregor GG, Wang W, Giebisch G (2000) Extracellular ATP inhibits the small-conductance K channel on the apical membrane of the cortical collecting duct from mouse kidney. J Gen Physiol 116(2):299–310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. MacKenzie S, Vaitkevicius H, Lockette W (2001) Sequencing and characterization of the human thiazide-sensitive Na-Cl cotransporter (SLC12A3) gene promoter. Biochem Biophys Res Commun 282(4):991–1000. doi:10.1006/bbrc.2001.4673

    Article  PubMed  CAS  Google Scholar 

  28. Misquitta CMCT, Grover AK (2006) Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 40(4):329–346

    Article  PubMed  CAS  Google Scholar 

  29. Naveh-Many T, Nechama M (2007) Regulation of parathyroid hormone mRNA stability by calcium, phosphate and uremia. Curr Opin Nephrol Hypertens 16(4):305–310. doi:10.1097/MNH.0b013e3281c55ede

    Article  PubMed  CAS  Google Scholar 

  30. Olinger E, Schwaller B, Loffing J, Gailly P, Devuyst O (2012) Parvalbumin: calcium and magnesium buffering in the distal nephron. Nephrol Dial Transplant 27(11):3988–3994. doi:10.1093/ndt/gfs457

    Article  PubMed  CAS  Google Scholar 

  31. Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, Stockand JD (2008) Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283(52):36599–36607. doi:10.1074/jbc.M807129200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Pochynyuk O, Rieg T, Bugaj V, Schroth J, Fridman A, Boss GR, Insel PA, Stockand JD, Vallon V (2010) Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J 24(6):2056–2065. doi:10.1096/fj.09-151506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM (2002) Epidermal growth factor-mediated activation of the ETS domain transcription factor Elk-1 requires nuclear calcium. J Biol Chem 277(30):27517–27527. doi:10.1074/jbc.M203002200

    Article  PubMed  CAS  Google Scholar 

  34. Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V (2007) Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 21(13):3717–3726. doi:10.1096/fj.07-8807com

    Article  PubMed  CAS  Google Scholar 

  35. Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59(3):423–450

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  37. Sachs AB (1993) Messenger RNA degradation in eukaryotes. Cell 74(3):413–421

    Article  PubMed  CAS  Google Scholar 

  38. Schaefer A, Magocsi M, Stocker U, Fandrich A, Marquardt H (1996) Ca2+/calmodulin-dependent and -independent down-regulation of c-myb mRNA levels in erythropoietin-responsive murine erythroleukemia cells. The role of calcineurin J Biol Chem 271(23):13484–13490

    CAS  Google Scholar 

  39. Schwiebert EM (2001) ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Parmacol Physiol 28(4):340–350

    Article  CAS  Google Scholar 

  40. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing-Cueni D, Loffing J (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83(5):811–824. doi:10.1038/ki.2013.14

    Article  PubMed  CAS  Google Scholar 

  41. Taboubi S, Milanini J, Delamarre E, Parat F, Garrouste F, Pommier G, Takasaki J, Hubaud JC, Kovacic H, Lehmann M (2007) G alpha(q/11)-coupled P2Y2 nucleotide receptor inhibits human keratinocyte spreading and migration. FASEB J 21(14):4047–4058. doi:10.1096/fj.06-7476com

    Article  PubMed  CAS  Google Scholar 

  42. Taniyama Y, Sato K, Sugawara A, Uruno A, Ikeda Y, Kudo M, Ito S, Takeuchi K (2001) Renal tubule-specific transcription and chromosomal localization of rat thiazide-sensitive Na-Cl cotransporter gene. J Biol Chem 276(28):26260–26268. doi:10.1074/jbc.M101614200

    Article  PubMed  CAS  Google Scholar 

  43. Unwin RJ, Bailey MA, Burnstock G (2003) Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci 18:237–241

    PubMed  CAS  Google Scholar 

  44. Vallon V (2008) P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 294(1):F10–F27. doi:10.1152/ajprenal.00432.2007

    Article  PubMed  CAS  Google Scholar 

  45. Vallon V, Rieg T (2011) Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 301(3):F463–F475. doi:10.1152/ajprenal.00236.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, Grisart B, Bridoux F, Unwin R, Moulin B, Haymann JP, Vantyghem MC, Rigothier C, Dussol B, Godin M, Nivet H, Dubourg L, Tack I, Gimenez-Roqueplo AP, Houillier P, Blanchard A, Devuyst O, Jeunemaitre X (2011) Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol 22(4):693–703. doi:10.1681/ASN.2010090907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zambon AC, Hughes RJ, Meszaros JG, Wu JJ, Torres B, Brunton LL, Insel PA (2000) P2Y(2) receptor of MDCK cells: cloning, expression, and cell-specific signaling. Am J Physiol Renal Physiol 279(6):F1045–F1052

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. J. Loffing and Mrs. M. Carrel (Dept. of Anatomy, University of Zurich) for help and fruitful discussions. This study was supported by the Belgian agencies "Fonds National de la Recherche Scientifique" and "Fonds de la Recherche Scientifique Médicale", Concerted Research Action (10-15/029) and Inter-University Attraction Poles (IUAP P7/13) from the Belgian Federal Government and by the NCCR Kidney.CH program (Swiss National Science Foundation); the Gebert Rüf Stiftung (Project GRS-038/12); and the Swiss National Science Foundation 310030-146490 (to OD).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Gailly or O. Devuyst.

Additional information

P. Gailly and M. Szutkowska contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gailly, P., Szutkowska, M., Olinger, E. et al. P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells. Pflugers Arch - Eur J Physiol 466, 2035–2047 (2014). https://doi.org/10.1007/s00424-013-1438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1438-2

Keywords

Navigation