Skip to main content

Advertisement

Log in

Sensitisation of TRPV4 by PAR2 is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2017

Abstract

Proteolytic activation of protease-activated receptor 2 (PAR2) may represent a major mechanism of regulating the transient receptor potential vanilloid 4 (TRPV4) non-selective cation channel in pathophysiological conditions associated with protease activation (e.g. during inflammation). To provide electrophysiological evidence for PAR2-mediated TRPV4 regulation, we characterised the properties of human TRPV4 heterologously expressed in Xenopus laevis oocytes in the presence and absence of co-expressed human PAR2. In outside-out patches from TRPV4 expressing oocytes, we detected single-channel activity typical for TRPV4 with a single-channel conductance of about 100 pS for outward and 55 pS for inward currents. The synthetic TRPV4 activator GSK1016790A stimulated TRPV4 mainly by converting previously silent channels into active channels with an open probability of nearly one. In oocytes co-expressing TRPV4 and PAR2, PAR2 activation by trypsin or by specific PAR2 agonist SLIGRL-NH2 potentiated the GSK1016790A-stimulated TRPV4 whole-cell currents several fold, indicative of channel sensitisation. Pre-incubation of oocytes with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA)-AM did not reduce the stimulatory effect of PAR2 activation on TRPV4, which indicates that the effect is independent of intracellular calcium signalling. Neutrophil elastase, a biased agonist of PAR2 that does not induce intracellular calcium signalling, also caused a PAR2-dependent sensitisation of TRPV4. The Rho-kinase inhibitor Y27362 abolished elastase-stimulated sensitisation of TRPV4, which indicates that Rho-kinase signalling plays a critical role in PAR2-mediated TRPV4 sensitisation by the biased agonist neutrophil elastase. During acute inflammation, neutrophil elastase may sensitise TRPV4 by a mechanism involving biased agonism of PAR2 and activation of Rho-kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TRPV4:

Transient receptor potential vanilloid 4

PAR2 :

Protease-activated receptor 2

GPCR:

G protein-coupled receptor

References

  1. Adebamiro A, Cheng Y, Rao US, Danahay H, Bridges RJ (2007) A segment of γENaC mediates elastase activation of Na+ transport. J Gen Physiol 130:611–629. doi:10.1085/jgp.200709781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barish ME (1983) A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol 342:309–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bohm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271:22003–22016. doi:10.1074/jbc.271.36.22003

    Article  CAS  PubMed  Google Scholar 

  4. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, Holtmann G, Liedtke W, Blackshaw LA (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–2069. doi:10.1053/j.gastro.2008.01.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97:5255–5260. doi:10.1073/pnas.97.10.5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135:937–946. doi:10.1053/j.gastro.2008.05.024, 946 e1-2

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Williams SH, McNulty AL, Hong JH, Lee SH, Rothfusz NE, Parekh PK, Moore C, Gereau RW, Taylor AB, Wang F, Guilak F, Liedtke W (2013) Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154:1295–1304. doi:10.1016/j.pain.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451. doi:10.1016/j.neuroscience.2011.06.085

    Article  CAS  PubMed  Google Scholar 

  9. Chraibi A, Vallet V, Firsov D, Hess SK, Horisberger JD (1998) Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol 111:127–138. doi:10.1085/jgp.111.1.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH, Payan DG, Bunnett NW (1997) Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest 100:1383–1393. doi:10.1172/JCI119658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279:13532–13539. doi:10.1074/jbc.M312090200

    Article  CAS  PubMed  Google Scholar 

  12. de Boer JD, Van’t Veer C, Stroo I, van der Meer AJ, de Vos AF, van der Zee JS, Roelofs JJ, van der Poll T (2013) Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun. doi:10.1177/1753425913503387

    PubMed  Google Scholar 

  13. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW (2000) beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281. doi:10.1083/jcb.148.6.1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169. doi:10.1038/ng.509

    Article  CAS  PubMed  Google Scholar 

  15. Diakov A, Bera K, Mokrushina M, Krueger B, Korbmacher C (2008) Cleavage in the γ-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol 586:4587–4608. doi:10.1113/jphysiol.2008.154435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diakov A, Korbmacher C (2004) A novel pathway of ENaC activation involves an SGK1 consensus motif in the C-terminus of the channel’s a-subunit. J Biol Chem 279:38134–38142. doi:10.1074/jbc.M403260200

    Article  CAS  PubMed  Google Scholar 

  17. Doring G (1994) The role of neutrophil elastase in chronic inflammation. Am J Respir Crit Care Med 150:S114–S117. doi:10.1164/ajrccm/150.6_Pt_2.S114

    Article  CAS  PubMed  Google Scholar 

  18. Dulon S, Cande C, Bunnett NW, Hollenberg MD, Chignard M, Pidard D (2003) Proteinase-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases. Am J Respir Cell Mol Biol 28:339–346. doi:10.1165/rcmb.4908

    Article  CAS  PubMed  Google Scholar 

  19. Durieux ME, Salafranca MN, Lynch KR (1994) Trypsin induces Ca(2+)-activated Cl currents in X. laevis oocytes. FEBS Lett 337:235–238. doi:10.1016/0014-5793(94)80198-3

    Article  CAS  PubMed  Google Scholar 

  20. Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17. doi:10.1016/j.pbiomolbio.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  21. Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM, Strassmaier T, Uykal E, Owsianik G, Vennekens R, De Ridder D, Nilius B, Fanger CM, Voets T (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107:19084–19089. doi:10.1073/pnas.1005333107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferguson JE, Hanley MR (1992) Phosphatidic acid and lysophosphatidic acid stimulate receptor-regulated membrane currents in the Xenopus laevis oocyte. Arch Biochem Biophys 297:388–392

    Article  CAS  PubMed  Google Scholar 

  23. Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, Stroope A, Masyuk AI, Splinter PL, LaRusso NF (2010) Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139(304–14):e2. doi:10.1053/j.gastro.2010.04.010

    Google Scholar 

  24. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733. doi:10.1113/jphysiol.2006.121111

    Article  CAS  PubMed  Google Scholar 

  25. Haerteis S, Krappitz M, Bertog M, Krappitz A, Baraznenok V, Henderson I, Lindstrom E, Murphy JE, Bunnett NW, Korbmacher C (2012) Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch 464:353–365. doi:10.1007/s00424-012-1138-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, Korbmacher C (2012) Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the γ-subunit of the human epithelial sodium channel. J Gen Physiol 140:375–389. doi:10.1085/jgp.201110763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, Wallace JL, Hollenberg MD, Vergnolle N (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 102:8363–8368. doi:10.1073/pnas.0409535102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harris M, Firsov D, Vuagniaux G, Stutts MJ, Rossier BC (2007) A novel neutrophil elastase inhibitor prevents elastase activation and surface cleavage of the epithelial sodium channel expressed in Xenopus laevis oocytes. J Biol Chem 282:58–64. doi:10.1074/jbc.M605125200

    Article  CAS  PubMed  Google Scholar 

  29. Hollenberg MD, Mihara K, Polley D, Suen JY, Han A, Fairlie DP, Ramachandran R (2014) Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br J Pharmacol 171:1180–1194. doi:10.1111/bph.12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin M, Wu Z, Chen L, Jaimes J, Collins D, Walters ET, O'Neil RG (2011) Determinants of TRPV4 activity following selective activation by small molecule agonist GSK1016790A. PLoS ONE 6:e16713. doi:10.1371/journal.pone.0016713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kassmann M, Harteneck C, Zhu Z, Nurnberg B, Tepel M, Gollasch M (2013) Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf) 207:546–564. doi:10.1111/apha.12051

    Article  CAS  Google Scholar 

  32. Knecht W, Cottrell GS, Amadesi S, Mohlin J, Skaregarde A, Gedda K, Peterson A, Chapman K, Hollenberg MD, Vergnolle N, Bunnett NW (2007) Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia. J Biol Chem 282:26089–26100. doi:10.1074/jbc.M703840200

    Article  CAS  PubMed  Google Scholar 

  33. Korbmacher C, Volk T, Segal AS, Boulpaep EL, Frömter E (1995) A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J Membr Biol 146:29–45

    Article  CAS  PubMed  Google Scholar 

  34. Krueger B, Haerteis S, Yang L, Hartner A, Rauh R, Korbmacher C, Diakov A (2009) Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1. Cell Physiol Biochem 24:605–618. doi:10.1159/000257516

    Article  CAS  PubMed  Google Scholar 

  35. Lamande SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D, Kaluarachchi K, Little CB, Botzenhart E, Zerres K, Amor DJ, Cole WG, Savarirayan R, McIntyre P, Bateman JF (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 43:1142–1146. doi:10.1038/ng.945

    Article  CAS  PubMed  Google Scholar 

  36. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174. doi:10.1038/ng.512

    Article  CAS  PubMed  Google Scholar 

  37. Leddy HA, McNulty AL, Lee SH, Rothfusz NE, Gloss B, Kirby ML, Hutson MR, Cohn DH, Guilak F, Liedtke W (2014) Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB J. doi:10.1096/fj.13-245936

    PubMed  PubMed Central  Google Scholar 

  38. Li J, Kanju P, Patterson M, Chew WL, Cho SH, Gilmour I, Oliver T, Yasuda R, Ghio A, Simon SA, Liedtke W (2011) TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environ Health Perspect 119:784–793. doi:10.1289/ehp.1002807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liedtke W (2005) TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 451:176–180. doi:10.1007/s00424-005-1449-8

    Article  CAS  PubMed  Google Scholar 

  40. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535. doi:10.1016/S0092-8674(00)00143-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lohman RJ, Cotterell AJ, Suen J, Liu L, Do AT, Vesey DA, Fairlie DP (2012) Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther 340:256–265. doi:10.1124/jpet.111.187062

    Article  CAS  PubMed  Google Scholar 

  42. Loukin S, Su Z, Zhou X, Kung C (2010) Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J Biol Chem 285:19884–19890. doi:10.1074/jbc.M110.113936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma X, Nilius B, Wong JW, Huang Y, Yao X (2011) Electrophysiological properties of heteromeric TRPV4-C1 channels. Biochim Biophys Acta 1808:2789–2797. doi:10.1016/j.bbamem.2011.07.049

    Article  CAS  PubMed  Google Scholar 

  44. Mize GJ, Wang W, Takayama TK (2008) Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2. Mol Cancer Res 6:1043–1051. doi:10.1158/1541-7786.MCR-08-0096

    Article  CAS  PubMed  Google Scholar 

  45. Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M, Brass LF (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 272:4043–4049

    Article  CAS  PubMed  Google Scholar 

  46. Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, Parekh P, Lee SH, Kontchou NA, Yeh I, Jokerst NM, Fuchs E, Steinhoff M, Liedtke WB (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 110:E3225–E3234. doi:10.1073/pnas.1312933110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812. doi:10.1016/j.bbadis.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  48. Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14:152–163. doi:10.1038/embor.2012.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nilius B, Voets T (2005) TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 451:1–10. doi:10.1007/s00424-005-1462-y

    Article  CAS  PubMed  Google Scholar 

  50. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A 91:9208–9212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, Scarisbrick I, Andrade-Gordon P, Cottrell GS, Bunnett NW, Diamandis EP, Hollenberg MD (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281:32095–32112. doi:10.1074/jbc.M513138200

    Article  CAS  PubMed  Google Scholar 

  52. Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621. doi:10.1152/physrev.00028.2003

    Article  CAS  PubMed  Google Scholar 

  53. Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60:3028–3037. doi:10.1002/art.24799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, Darby W, Liedtke W, Lew MJ, McIntyre P, Bunnett NW (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288:5790–5802. doi:10.1074/jbc.M112.438184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raisinghani M, Zhong L, Jeffry JA, Bishnoi M, Pabbidi RM, Pimentel F, Cao DS, Evans MS, Premkumar LS (2011) Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception. Am J Physiol Cell Physiol 301:C587–C600. doi:10.1152/ajpcell.00465.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD (2011) Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem 286:24638–24648. doi:10.1074/jbc.M110.201988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramachandran R, Mihara K, Mathur M, Rochdi MD, Bouvier M, Defea K, Hollenberg MD (2009) Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways. Mol Pharmacol 76:791–801. doi:10.1124/mol.109.055509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramsay AJ, Dong Y, Hunt ML, Linn M, Samaratunga H, Clements JA, Hooper JD (2008) Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J Biol Chem 283:12293–12304. doi:10.1074/jbc.M709493200

    Article  CAS  PubMed  Google Scholar 

  59. Ramsay AJ, Reid JC, Adams MN, Samaratunga H, Dong Y, Clements JA, Hooper JD (2008) Prostatic trypsin-like kallikrein-related peptidases (KLKs) and other prostate-expressed tryptic proteinases as regulators of signalling via proteinase-activated receptors (PARs). Biol Chem 389:653–668. doi:10.1515/BC.2008.078

    Article  CAS  PubMed  Google Scholar 

  60. Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dotsch J, Sticht H, Korbmacher C (2010) A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J Physiol 588:1211–1225. doi:10.1113/jphysiol.2009.180224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003. doi:10.1038/ng.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, Liedtke W, Cohen DM, Vanner S, Blackshaw LA, Bunnett NW (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–G1298. doi:10.1152/ajpgi.00002.2008

    Article  CAS  PubMed  Google Scholar 

  63. Smith R, Jenkins A, Lourbakos A, Thompson P, Ramakrishnan V, Tomlinson J, Deshpande U, Johnson DA, Jones R, Mackie EJ, Pike RN (2000) Evidence for the activation of PAR-2 by the sperm protease, acrosin: expression of the receptor on oocytes. FEBS Lett 484:285–290. doi:10.1016/S0014-5793(00)02146-3

    Article  CAS  PubMed  Google Scholar 

  64. Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP (2012) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 165:1413–1423. doi:10.1111/j.1476-5381.2011.01610.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sullivan MN, Francis M, Pitts NL, Taylor MS, Earley S (2012) Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol Pharmacol 82:464–472. doi:10.1124/mol.112.078584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS (2000) Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275:26333–26342. doi:10.1074/jbc.M002941200

    Article  CAS  PubMed  Google Scholar 

  67. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–442. doi:10.1124/jpet.108.139295

    Article  CAS  PubMed  Google Scholar 

  68. Veldhuis NA, Bunnett NW (2013) Proteolytic regulation of TRP channels: implications for pain and neurogenic inflammation. Proc Aust Physiol Soc 44:101–108

    Google Scholar 

  69. Vergnolle N (2014) TRPV4: new therapeutic target for inflammatory bowel diseases. Biochem Pharmacol 89:157–161. doi:10.1016/j.bcp.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  70. Vergnolle N, Wallace JL, Bunnett NW, Hollenberg MD (2001) Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci 22:146–152. doi:10.1016/S0165-6147(00)01634-5

    Article  CAS  PubMed  Google Scholar 

  71. Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA (2009) Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 389:490–494. doi:10.1016/j.bbrc.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  72. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754. doi:10.1038/nature02732

    Article  CAS  PubMed  Google Scholar 

  73. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401. doi:10.1073/pnas.0303329101

    Article  CAS  PubMed  Google Scholar 

  74. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577. doi:10.1074/jbc.M200062200

    Article  CAS  PubMed  Google Scholar 

  75. Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33:489–495. doi:10.1016/S0143-4160(03)00064-2

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438. doi:10.1038/nature01807

    Article  CAS  PubMed  Google Scholar 

  77. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051. doi:10.1074/jbc.M208277200

    Article  CAS  PubMed  Google Scholar 

  78. Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J, Hawthorne S (2005) The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388:967–972. doi:10.1042/BJ20041066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Bostrom P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151:96–110. doi:10.1016/j.cell.2012.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The expert technical assistance of Ralf Rinke is gratefully acknowledged. This study was supported by a PhD fellowship from the Bayerische Forschungsstiftung (S.S.) and by NHMRC grants 63303, 1031886, 1046860 and 1049682 and Monash University (N.W.B., P.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Korbmacher.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00424-017-1973-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sostegni, S., Diakov, A., McIntyre, P. et al. Sensitisation of TRPV4 by PAR2 is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase. Pflugers Arch - Eur J Physiol 467, 687–701 (2015). https://doi.org/10.1007/s00424-014-1539-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1539-6

Keywords

Navigation