Skip to main content

Advertisement

Log in

Dietary potassium and the renal control of salt balance and blood pressure

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Dietary potassium (K+) intake has antihypertensive effects, prevents strokes, and improves cardiovascular outcomes. The underlying mechanism for these beneficial effects of high K+ diets may include vasodilation, enhanced urine flow, reduced renal renin release, and negative sodium (Na+) balance. Indeed, several studies demonstrate that dietary K+ intake induces renal Na+ loss despite elevated plasma aldosterone. This review briefly highlights the epidemiological and experimental evidences for the effects of dietary K+ on arterial blood pressure. It discusses the pivotal role of the renal distal tubule for the regulation of urinary K+ and Na+ excretion and blood pressure and highlights that it depends on the coordinated interaction of different nephron portions, epithelial cell types, and various ion channels, transporters, and ATPases. Moreover, we discuss the relevance of aldosterone and aldosterone-independent factors in mediating the effects of an altered K+ intake on renal K+ and Na+ handling. Particular focus is given to findings suggesting that an aldosterone-independent downregulation of the thiazide-sensitive NaCl cotransporter significantly contributes to the natriuretic and antihypertensive effect of a K+-rich diet. Last but not least, we refer to the complex signaling pathways enabling the kidney to adapt its function to the homeostatic needs in response to an altered K+ intake. Future work will have to further address the underlying cellular and molecular mechanism and to elucidate, among others, how an altered dietary K+ intake is sensed and how this signal is transmitted to the different epithelial cells lining the distal tubule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aaron KJ, Sanders PW (2013) Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc 88(9):987–995

    CAS  PubMed  Google Scholar 

  2. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346:f1378

    PubMed  Google Scholar 

  3. Addison WL (1988) The Canadian Medical Association Journal, vol. XVIII (1928) The use of sodium chloride, potassium chloride, sodium bromide, and potassium bromide in cases of arterial hypertension which are amenable to potassium chloride. Nutr Rev 46(8):295–296

    Google Scholar 

  4. Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y, Kahle KT (2014) The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Science signaling 7 (334):re3

  5. Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G (2011) Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology 26(2):115–123

    CAS  PubMed  Google Scholar 

  6. Bachmann S, Bostanjoglo M, Schmitt R, Ellison DH (1999) Sodium transport-related proteins in the mammalian distal nephron—distribution, ontogeny and functional aspects. Anat Embryol (Berl) 200(5):447–468

    CAS  Google Scholar 

  7. Bahler RC, Rakita L (1971) Cardiovascular function in potassium-depleted dogs. Am Heart J 81(5):650–657

    CAS  PubMed  Google Scholar 

  8. Bailey MA, Cantone A, Yan Q, MacGregor GG, Leng Q, Amorim JB, Wang T, Hebert SC, Giebisch G, Malnic G (2006) Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int 70(1):51–59

    CAS  PubMed  Google Scholar 

  9. Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, Warth R, Reichold M (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 461(4):423–435

    CAS  PubMed  Google Scholar 

  10. Bandulik S, Tauber P, Lalli E, Barhanin J, Warth R (2014) Two-pore domain potassium channels in the adrenal cortex. Pflugers Arch

  11. Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B (1998) Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102(8):1634–1640

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Barri YM, Wingo CS (1997) The effects of potassium depletion and supplementation on blood pressure: a clinical review. Am J Med Sci 314(1):37–40

    CAS  PubMed  Google Scholar 

  13. Bazua-Valenti S, Chavez-Canales M, Rojas LL, Vázquez NH, Rodriguez-Gama A, Melo Z, Plata C, Ellison DH, Hadchouel J, Gamba G (2014) The effect of WNK4 on the NaCl cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 25:375A

    Google Scholar 

  14. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Valimaki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482(7383):98–102

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Brandis M, Keyes J, Windhager EE (1972) Potassium-induced inhibition of proximal tubular fluid reabsorption in rats. Am J Physiol 222(2):421–427

    CAS  PubMed  Google Scholar 

  16. Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW (2005) BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 8(12):1752–1759

    CAS  PubMed  Google Scholar 

  17. Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper S (1996) Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochem Cell Biol 105(4):261–267

    CAS  PubMed  Google Scholar 

  18. Cao XR, Shi PP, Sigmund RD, Husted RF, Sigmund CD, Williamson RA, Stokes JB, Yang B (2006) Mice heterozygous for beta-ENaC deletion have defective potassium excretion. Am J Physiol Renal Physiol 291(1):F107–F115

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Cassola AC, Giebisch G, Wang W (1993) Vasopressin increases density of apical low-conductance K+ channels in rat CCD. Am J Physiol 264(3 Pt 2):F502–F509

    CAS  PubMed  Google Scholar 

  20. Castaneda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vazquez N, Moreno E, Gamba G (2014) Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved. Am J Physiol Renal Physiol 306(12):F1507–F1519

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, Uribe N, Kantesaria S, Morla L, Bobadilla NA, Doucet A, Alessi DR, Gamba G (2012) Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci U S A 109(20):7929–7934

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Castro H, Raij L (2013) Potassium in hypertension and cardiovascular disease. Semin Nephrol 33(3):277–289

    CAS  PubMed  Google Scholar 

  23. Chambrey R, Kurth I, Peti-Peterdi J, Houillier P, Purkerson JM, Leviel F, Hentschke M, Zdebik AA, Schwartz GJ, Hubner CA, Eladari D (2013) Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A 110(19):7928–7933

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12(3):248–253

    CAS  PubMed  Google Scholar 

  25. Chavez-Canales M, Zhang C, Soukaseum C, Moreno E, Pacheco-Alvarez D, Vidal-Petiot E, Castaneda-Bueno M, Vazquez N, Rojas-Vega L, Meermeier NP, Rogers S, Jeunemaitre X, Yang CL, Ellison DH, Gamba G, Hadchouel J (2014) WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension 64(5):1047–1053

    CAS  PubMed  Google Scholar 

  26. Cheema-Dhadli S, Lin SH, Keong-Chong C, Kamel KS, Halperin ML (2006) Requirements for a high rate of potassium excretion in rats consuming a low electrolyte diet. J Physiol 572(Pt 2):493–501

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A 96(5):2514–2519

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Cheng CJ, Baum M, Huang CL (2013) Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct. Am J Physiol Renal Physiol 304(4):F397–F402

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Christensen BM, Perrier R, Wang Q, Zuber AM, Maillard M, Mordasini D, Malsure S, Ronzaud C, Stehle JC, Rossier BC, Hummler E (2010) Sodium and potassium balance depends on alphaENaC expression in connecting tubule. J Am Soc Nephrol 21(11):1942–1951

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Christensen EI, Wagner CA, Kaissling B (2012) Uriniferous tubule: structural and functional organization. Compre Physiol 2(2):805–861

    Google Scholar 

  31. Crambert G (2014) H-K-ATPase type 2: relevance for renal physiology and beyond. Am J Physiol Renal Physiol 306(7):F693–F700

    CAS  PubMed  Google Scholar 

  32. Dahl LK, Leitl G, Heine M (1972) Influence of dietary potassium and sodium/potassium molar ratios on the development of salt hypertension. J Exp Med 136(2):318–330

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Dekel B, Nakhoul F, Abassi Z, Aviv R, Winaver J, Szylman P (1997) Complete adaptation to chronic potassium loading after adrenalectomy: possible humoral mechanisms. J Lab Clin Med 129(4):453–461

    CAS  PubMed  Google Scholar 

  34. Dietz R, Schomig A, Rascher W, Strasser R, Ganten U, Kubler W (1981) Partial replacement of sodium by potassium in the diet restores impaired noradrenaline inactivation and lowers blood pressure in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond) 61(Suppl 7):69s–71s

    CAS  Google Scholar 

  35. El Moghrabi S, Houillier P, Picard N, Sohet F, Wootla B, Bloch-Faure M, Leviel F, Cheval L, Frische S, Meneton P, Eladari D, Chambrey R (2010) Tissue kallikrein permits early renal adaptation to potassium load. Proc Natl Acad Sci U S A 107(30):13526–13531

    PubMed Central  PubMed  Google Scholar 

  36. Elabida B, Edwards A, Salhi A, Azroyan A, Fodstad H, Meneton P, Doucet A, Bloch-Faure M, Crambert G (2011) Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium. Kidney Int 80(3):256–262

    CAS  PubMed  Google Scholar 

  37. Eladari D, Chambrey R, Picard N, Hadchouel J (2014) Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cellular and molecular life sciences : CMLS

  38. Elkjaer ML, Kwon TH, Wang W, Nielsen J, Knepper MA, Frokiaer J, Nielsen S (2002) Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 283(6):F1376–F1388

    CAS  PubMed  Google Scholar 

  39. Ellison DH, Loffing J (2009) Thiazide effects and adverse effects: insights from molecular genetics. Hypertension 54(2):196–202

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Estilo G, Liu W, Pastor-Soler N, Mitchell P, Carattino MD, Kleyman TR, Satlin LM (2008) Effect of aldosterone on BK channel expression in mammalian cortical collecting duct. Am J Physiol Renal Physiol 295(3):F780–F788

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Faresse N, Lagnaz D, Debonneville A, Ismailji A, Maillard M, Fejes-Toth G, Naray-Fejes-Toth A, Staub O (2012) Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol 302(8):F977–F985

    CAS  PubMed  Google Scholar 

  42. Fejes-Toth G, Frindt G, Naray-Fejes-Toth A, Palmer LG (2008) Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol Renal Physiol 294(6):F1298–F1305

    CAS  PubMed  Google Scholar 

  43. Field MJ, Stanton BA, Giebisch GH (1984) Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J Clin Invest 74(5):1792–1802

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Field MJ, Stanton BA, Giebisch GH (1984) Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int 25(3):502–511

    CAS  PubMed  Google Scholar 

  45. Fodstad H, Gonzalez-Rodriguez E, Bron S, Gaeggeler H, Guisan B, Rossier BC, Horisberger JD (2009) Effects of mineralocorticoid and K+ concentration on K+ secretion and ROMK channel expression in a mouse cortical collecting duct cell line. Am J Physiol Renal Physiol 296(5):F966–F975

    CAS  PubMed  Google Scholar 

  46. Freed SC, Friedman M (1950) Hypotension in the rat following limitation of potassium intake. Science 112(2922):788–789

    CAS  PubMed  Google Scholar 

  47. Frindt G, Houde V, Palmer LG (2011) Conservation of Na+ vs. K+ by the rat cortical collecting duct. Am J Physiol Renal Physiol 301(1):F14–F20

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Frindt G, Palmer LG (2004) Na channels in the rat connecting tubule. Am J Physiol Renal Physiol 286(4):F669–F674

    CAS  PubMed  Google Scholar 

  49. Frindt G, Palmer LG (2009) K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms. Am J Physiol Renal Physiol 297(2):F389–F396

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Frindt G, Palmer LG (2010) Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am J Physiol Renal Physiol 299(4):F890–F897

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Frindt G, Zhou H, Sackin H, Palmer LG (1998) Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation. Am J Physiol 274(3 Pt 2):F525–F531

    CAS  PubMed  Google Scholar 

  52. Fujita T, Sato Y (1984) Changes in renal and central noradrenergic activity with potassium in DOCA-salt rats. Am J Physiol 246(5 Pt 2):F670–F675

    CAS  PubMed  Google Scholar 

  53. Glover M, Mercier Zuber A, Figg N, O’Shaughnessy KM (2010) The activity of the thiazide-sensitive Na(+)-Cl(−) cotransporter is regulated by protein phosphatase PP4. Can J Physiol Pharmacol 88(10):986–995

    CAS  PubMed  Google Scholar 

  54. Glover M, O’Shaughnessy KM (2013) Molecular insights from dysregulation of the thiazide-sensitive WNK/SPAK/NCC pathway in the kidney: Gordon syndrome and thiazide-induced hyponatraemia. Clin Experiment Pharmacol Physiol 40(12):876–884

    CAS  Google Scholar 

  55. Greenlee M, Wingo CS, McDonough AA, Youn JH, Kone BC (2009) Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med 150(9):619–625

    PubMed  Google Scholar 

  56. Grimm PR, Irsik DL, Liu L, Holtzclaw JD, Sansom SC (2009) Role of BKbeta1 in Na+ reabsorption by cortical collecting ducts of Na +-deprived mice. Am J Physiol Renal Physiol 297(2):F420–F428

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS (2010) The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 298(1):F12–F21

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Hadchouel J, Soukaseum C, Busst C, Zhou XO, Baudrie V, Zurrer T, Cambillau M, Elghozi JL, Lifton RP, Loffing J, Jeunemaitre X (2010) Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension. Proc Natl Acad Sci U S A 107(42):18109–18114

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP (1995) Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 11(1):76–82

    CAS  PubMed  Google Scholar 

  60. Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RP (1995) A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 92(25):11495–11499

    PubMed Central  CAS  PubMed  Google Scholar 

  61. He FJ, MacGregor GA (2008) Beneficial effects of potassium on human health. Physiol Plant 133(4):725–735

    CAS  PubMed  Google Scholar 

  62. He FJ, Markandu ND, Coltart R, Barron J, MacGregor GA (2005) Effect of short-term supplementation of potassium chloride and potassium citrate on blood pressure in hypertensives. Hypertension 45(4):571–574

    CAS  PubMed  Google Scholar 

  63. Holtzclaw JD, Cornelius RJ, Hatcher LI, Sansom SC (2011) Coupled ATP and potassium efflux from intercalated cells. Am J Physiol Renal Physiol 300(6):F1319–F1326

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Holtzclaw JD, Grimm PR, Sansom SC (2011) Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens 20(5):512–517

    CAS  PubMed  Google Scholar 

  65. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH (2011) The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 22(4):605–614

    CAS  PubMed  Google Scholar 

  66. Huang CL, Kuo E, Toto RD (2008) WNK kinases and essential hypertension. Curr Opin Nephrol Hypertens 17(2):133–137

    CAS  PubMed  Google Scholar 

  67. Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V (2004) Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J Am Soc Nephrol 15(4):885–891

    CAS  PubMed  Google Scholar 

  68. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12(3):325–328

    CAS  PubMed  Google Scholar 

  69. Hunter RW, Craigie E, Homer NZ, Mullins JJ, Bailey MA (2014) Acute inhibition of NCC does not activate distal electrogenic Na+ reabsorption or kaliuresis. Am J Physiol Renal Physiol 306(4):F457–F467

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Iimura O, Kijima T, Kikuchi K, Miyama A, Ando T, Nakao T, Takigami Y (1981) Studies on the hypotensive effect of high potassium intake in patients with essential hypertension. Clin Sci (Lond) 61(Suppl 7):77s–80s

    CAS  Google Scholar 

  71. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group (1988). Bmj 297 (6644):319–328

  72. Jain G, Ong S, Warnock DG (2013) Genetic disorders of potassium homeostasis. Semin Nephrol 33(3):300–309

    CAS  PubMed  Google Scholar 

  73. Jung JY, Kim S, Lee JW, Jung ES, Heo NJ, Son MJ, Oh YK, Na KY, Han JS, Joo KW (2011) Effects of potassium on expression of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy. Am J Physiol Renal Physiol 300(6):F1422–F1430

    CAS  PubMed  Google Scholar 

  74. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35(4):372–376

    CAS  PubMed  Google Scholar 

  75. Kaissling B, Le Hir M (1982) Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. I Struct Chang Cell Tissue Res 224(3):469–492

    CAS  Google Scholar 

  76. Karolyi L, Ziegler A, Pollak M, Fischbach M, Grzeschik KH, Koch MC, Seyberth HW (1996) Gitelman’s syndrome is genetically distinct from other forms of Bartter’s syndrome. Pediatr Nephrol 10(5):551–554

    CAS  PubMed  Google Scholar 

  77. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA (1998) The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A 95(24):14552–14557

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Kirchner KA (1983) Effect of acute potassium infusion on loop segment chloride reabsorption in the rat. Am J Physiol 244(6):F599–F605

    CAS  PubMed  Google Scholar 

  79. Krishna GG, Kapoor SC (1991) Potassium depletion exacerbates essential hypertension. Ann Intern Med 115(2):77–83

    CAS  PubMed  Google Scholar 

  80. Krishna GG, Miller E, Kapoor S (1989) Increased blood pressure during potassium depletion in normotensive men. N Engl J Med 320(18):1177–1182

    CAS  PubMed  Google Scholar 

  81. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, Nelson-Williams C, Ellison DH, Flavell R, Booth CJ, Lu Y, Geller DS, Lifton RP (2006) Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 38(10):1124–1132

    CAS  PubMed  Google Scholar 

  82. Langford HG (1983) Dietary potassium and hypertension: epidemiologic data. Ann Intern Med 98(5 Pt 2):770–772

    CAS  PubMed  Google Scholar 

  83. Lawton WJ, Fitz AE, Anderson EA, Sinkey CA, Coleman RA (1990) Effect of dietary potassium on blood pressure, renal function, muscle sympathetic nerve activity, and forearm vascular resistance and flow in normotensive and borderline hypertensive humans. Circulation 81(1):173–184

    CAS  PubMed  Google Scholar 

  84. Lazrak A, Liu Z, Huang CL (2006) Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. Proc Natl Acad Sci U S A 103(5):1615–1620

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Lee DH, Maunsbach AB, Riquier-Brison AD, Nguyen MT, Fenton RA, Bachmann S, Yu AS, McDonough AA (2013) Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties. Am J Physiol Cell Physiol 304(2):C147–C163

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Lee FN, Oh G, McDonough AA, Youn JH (2007) Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol 293(2):F541–F547

    CAS  PubMed  Google Scholar 

  87. Lemmink HH, van den Heuvel LP, van Dijk HA, Merkx GF, Smilde TJ, Taschner PE, Monnens LA, Hebert SC, Knoers NV (1996) Linkage of Gitelman syndrome to the thiazide-sensitive sodium-chloride cotransporter gene with identification of mutations in Dutch families. Pediatr Nephrol 10(4):403–407

    CAS  PubMed  Google Scholar 

  88. Lin DH, Yue P, Rinehart J, Sun P, Wang Z, Lifton R, Wang WH (2012) Protein phosphatase 1 modulates the inhibitory effect of With-no-Lysine kinase 4 on ROMK channels. Am J Physiol Renal Physiol 303(1):F110–F119

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Liu W, Schreck C, Coleman RA, Wade JB, Hernandez Y, Zavilowitz B, Warth R, Kleyman TR, Satlin LM (2011) Role of NKCC in BK channel-mediated net K(+) secretion in the CCD. Am J Physiol Renal Physiol 301(5):F1088–F1097

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Liu Y, Song X, Shi Y, Shi Z, Niu W, Feng X, Gu D, Bao HF, Ma HP, Eaton DC, Zhuang J, Cai H (2014) WNK1 activates large-conductance Ca2+-activated K+ channels through modulation of ERK1/2 signaling. J Am Soc Nephrol

  91. Loffing J, Kaissling B (2003) Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 284(4):F628–F643

    CAS  PubMed  Google Scholar 

  92. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458(1):111–135

    CAS  PubMed  Google Scholar 

  93. Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F (2001) Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol 280(4):F675–F682

    CAS  PubMed  Google Scholar 

  94. Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Shull GE (2002) Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 277(40):37871–37880

    CAS  PubMed  Google Scholar 

  95. International Consortium for Blood P, Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(4):456–460, S451-453

    Google Scholar 

  96. Louis WJ, Tabei R, Spector S (1971) Effects of sodium intake on inherited hypertension in the rat. Lancet 2(7737):1283–1286

    CAS  PubMed  Google Scholar 

  97. MacGregor GA, Smith SJ, Markandu ND, Banks RA, Sagnella GA (1982) Moderate potassium supplementation in essential hypertension. Lancet 2(8298):567–570

    CAS  PubMed  Google Scholar 

  98. Malnic G, Berliner RW, Giebisch G (1990) Distal perfusion studies: transport stimulation by native tubule fluid. Am J Physiol 258(6 Pt 2):F1523–F1527

    CAS  PubMed  Google Scholar 

  99. Malnic G, Klose RM, Giebisch G (1966) Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol 211(3):548–559

    CAS  PubMed  Google Scholar 

  100. Manger WM, Simchon S, Stier CT Jr, Loscalzo J, Jan KM, Jan R, Haddy F (2003) Protective effects of dietary potassium chloride on hemodynamics of Dahl salt-sensitive rats in response to chronic administration of sodium chloride. J Hypertens 21(12):2305–2313

    CAS  PubMed  Google Scholar 

  101. Martin RS, Hayslett JP (1986) Role of aldosterone in the mechanism of renal potassium adaptation. Pflugers Arch 407(1):76–81

    CAS  PubMed  Google Scholar 

  102. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104(7):R19–R23

    PubMed Central  CAS  PubMed  Google Scholar 

  103. McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB Jr, Stokes JB, Welsh MJ, Williamson RA (1999) Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 96(4):1727–1731

    PubMed Central  CAS  PubMed  Google Scholar 

  104. McDonough AA, Youn JH (2013) Need to quickly excrete K(+)? Turn off NCC. Kidney Int 83(5):779–782

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Meneely GR, Lemley-Stone J, Darby WJ (1961) Changes in blood pressure and body sodium of rats fed sodium and potassium chloride. Am J Cardiol 8:527–532

    CAS  PubMed  Google Scholar 

  106. Meneton P, Loffing J, Warnock DG (2004) Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 287(4):F593–F601

    CAS  PubMed  Google Scholar 

  107. Meneton P, Schultheis PJ, Greeb J, Nieman ML, Liu LH, Clarke LL, Duffy JJ, Doetschman T, Lorenz JN, Shull GE (1998) Increased sensitivity to K+ deprivation in colonic H, K-ATPase-deficient mice. J Clin Invest 101(3):536–542

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C, Mony P, Devanath A, Rosengren A, Oguz A, Zatonska K, Yusufali AH, Lopez-Jaramillo P, Avezum A, Ismail N, Lanas F, Puoane T, Diaz R, Kelishadi R, Iqbal R, Yusuf R, Chifamba J, Khatib R, Teo K, Yusuf S, Investigators P (2014) Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371(7):601–611

    CAS  PubMed  Google Scholar 

  109. Michell AR, Debnam ES, Unwin RJ (2008) Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu Rev Physiol 70:379–403

    CAS  PubMed  Google Scholar 

  110. Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ (2014) The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch 466(1):107–118

    CAS  PubMed  Google Scholar 

  111. Naito S, Ohta A, Sohara E, Ohta E, Rai T, Sasaki S, Uchida S (2011) Regulation of WNK1 kinase by extracellular potassium. Clin Exp Nephrol 15(2):195–202

    CAS  PubMed  Google Scholar 

  112. Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM (2005) Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol 289(4):F922–F932

    CAS  PubMed  Google Scholar 

  113. Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G (1999) sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274(24):16973–16978

    CAS  PubMed  Google Scholar 

  114. Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C (2012) Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am J Physiol Renal Physiol 303(9):F1289–F1299

    CAS  PubMed  Google Scholar 

  115. Nguyen MT, Yang LE, Fletcher NK, Lee DH, Kocinsky H, Bachmann S, Delpire E, McDonough AA (2012) Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters’ abundance along the nephron. Am J Physiol Renal Physiol 303(1):F92–F104

    PubMed Central  CAS  PubMed  Google Scholar 

  116. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, Yan H, Lee SF, Mony P, Devanath A, Rosengren A, Lopez-Jaramillo P, Diaz R, Avezum A, Lanas F, Yusoff K, Iqbal R, Ilow R, Mohammadifard N, Gulec S, Yusufali AH, Kruger L, Yusuf R, Chifamba J, Kabali C, Dagenais G, Lear SA, Teo K, Yusuf S, Investigators P (2014) Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 371(7):612–623

    PubMed  Google Scholar 

  117. O’Reilly M, Marshall E, Macgillivray T, Mittal M, Xue W, Kenyon CJ, Brown RW (2006) Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo. J Am Soc Nephrol 17(9):2402–2413

    PubMed  Google Scholar 

  118. Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmuller C, Macgregor GA, de Wardener HE (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci U S A 106(8):2829–2834

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Palmer BF (2014) Regulation of potassium homeostasis. Clinical Journal of the American Society of Nephrology, CJASN

    Google Scholar 

  120. Palmer LG, Antonian L, Frindt G (1994) Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol 104(4):693–710

    CAS  PubMed  Google Scholar 

  121. Palmer LG, Frindt G (1999) Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol 277(5 Pt 2):F805–F812

    CAS  PubMed  Google Scholar 

  122. Palmer LG, Frindt G (2007) High-conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol Renal Physiol 292(3):F966–F973

    CAS  PubMed  Google Scholar 

  123. Palmer LG, Frindt G (2007) Na+ and K+ transport by the renal connecting tubule. Curr Opin Nephrol Hypertens 16(5):477–483

    CAS  PubMed  Google Scholar 

  124. Palmer LG, Schnermann J (2014) Integrated control of Na transport along the nephron. Clinical Journal of the American Society of Nephrology: CJASN

  125. Parfrey PS, Condon K, Wright P, Vandenburg MJ, Holly JM, Goodwin FJ, Evans SJ, Ledingham JM (1981) Blood pressure and hormonal changes following alteration in dietary sodium and potassium in young men with and without a familial predisposition to hypertension. Lancet 1(8212):113–117

    CAS  PubMed  Google Scholar 

  126. Patel AB, Chao J, Palmer LG (2012) Tissue kallikrein activation of the epithelial Na channel. Am J Physiol Renal Physiol 303(4):F540–F550

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Pathare G, Hoenderop JG, Bindels RJ, San-Cristobal P (2013) A molecular update on pseudohypoaldosteronism type II. Am J Physiol Renal Physiol 305(11):F1513–F1520

    CAS  PubMed  Google Scholar 

  128. Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ (2014) Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 7(324):ra41

    PubMed Central  PubMed  Google Scholar 

  129. Picard N, Eladari D, El Moghrabi S, Planes C, Bourgeois S, Houillier P, Wang Q, Burnier M, Deschenes G, Knepper MA, Meneton P, Chambrey R (2008) Defective ENaC processing and function in tissue kallikrein-deficient mice. J Biol Chem 283(8):4602–4611

    CAS  PubMed  Google Scholar 

  130. Picard N, Trompf K, Yang CL, Miller RL, Carrel M, Loffing-Cueni D, Fenton RA, Ellison DH, Loffing J (2014) Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J Am Soc Nephrol 25(3):511–522

    CAS  PubMed  Google Scholar 

  131. Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O (2000) Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res 87(11):E53–E60

    CAS  PubMed  Google Scholar 

  132. Pradervand S, Vandewalle A, Bens M, Gautschi I, Loffing J, Hummler E, Schild L, Rossier BC (2003) Dysfunction of the epithelial sodium channel expressed in the kidney of a mouse model for Liddle syndrome. J Am Soc Nephrol 14(9):2219–2228

    CAS  PubMed  Google Scholar 

  133. Rabinowitz L (1996) Aldosterone and potassium homeostasis. Kidney Int 49(6):1738–1742

    CAS  PubMed  Google Scholar 

  134. Rabinowitz L, Green DM, Sarason RL, Yamauchi H (1988) Homeostatic potassium excretion in fed and fasted sheep. Am J Physiol 254(2 Pt 2):R357–R380

    CAS  PubMed  Google Scholar 

  135. Rabinowitz L, Sarason RL, Yamauchi H (1985) Effects of KCl infusion on potassium excretion in sheep. Am J Physiol 249(2 Pt 2):F263–F271

    CAS  PubMed  Google Scholar 

  136. Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80(1):277–313

    CAS  PubMed  Google Scholar 

  137. Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA (2014) Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Renal Physiol 306(9):F1059–F1068

    CAS  PubMed  Google Scholar 

  138. Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B, Ruth P, Osswald H (2007) The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int 72(5):566–573

    CAS  PubMed  Google Scholar 

  139. Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP (2007) WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci U S A 104(10):4020–4024

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT, Hebert SC, Lifton RP (2007) An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci U S A 104(10):4025–4029

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Ronzaud C, Staub O (2014) Ubiquitylation and control of renal Na+ balance and blood pressure. Physiology 29(1):16–26

    CAS  PubMed  Google Scholar 

  142. Rossier BC, Staub O, Hummler E (2013) Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett 587(13):1929–1941

    CAS  PubMed  Google Scholar 

  143. Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361–379

    CAS  PubMed  Google Scholar 

  144. Rozansky DJ, Cornwall T, Subramanya AR, Rogers S, Yang YF, David LL, Zhu X, Yang CL, Ellison DH (2009) Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest 119(9):2601–2612

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC (2003) Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112(4):554–565

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Rutledge JC, Rabinowitz L (1987) Kaliuretic regulatory factors in the rat. Am J Physiol 253(6 Pt 2):F1182–F1196

    CAS  PubMed  Google Scholar 

  147. Sachse G, Faulhaber J, Seniuk A, Ehmke H, Pongs O (2014) Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice. J Physiol 592(Pt 12):2563–2574

    CAS  PubMed  Google Scholar 

  148. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH, Group DA-SCR (2001) Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med 344(1):3–10

    CAS  PubMed  Google Scholar 

  149. Saum WR, Ayachi S, Brown AM (1977) Actions of sodium and potassium ions on baroreceptors of normotensive and spontaneously hypertensive rats. Circ Res 41(6):768–774

    CAS  PubMed  Google Scholar 

  150. Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112(1):60–68

    CAS  PubMed  Google Scholar 

  151. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem 273(44):29150–29155

    CAS  PubMed  Google Scholar 

  152. Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda-Bueno M, Stiegler AL, Boggon TJ, Gamba G, Lifton RP (2013) Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab 18(5):660–671

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79(3):407–414

    CAS  PubMed  Google Scholar 

  154. Shirley DG, Skinner J, Walter SJ (1987) The influence of dietary potassium on the renal tubular effect of hydrochlorothiazide in the rat. Br J Pharmacol 91(3):693–699

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12(1):24–30

    CAS  PubMed  Google Scholar 

  156. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing-Cueni D, Loffing J (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83(5):811–824

    CAS  PubMed  Google Scholar 

  157. Spicer Z, Miller ML, Andringa A, Riddle TM, Duffy JJ, Doetschman T, Shull GE (2000) Stomachs of mice lacking the gastric H, K-ATPase alpha-subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 275(28):21555–21565

    CAS  PubMed  Google Scholar 

  158. Stanton B, Pan L, Deetjen H, Guckian V, Giebisch G (1987) Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J Clin Invest 79(1):198–206

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Stanton BA (1989) Renal potassium transport: morphological and functional adaptations. Am J Physiol 257(5 Pt 2):R989–R997

    CAS  PubMed  Google Scholar 

  160. Stokes JB (1982) Consequences of potassium recycling in the renal medulla. Effects of ion transport by the medullary thick ascending limb of Henle’s loop. J Clin Invest 70(2):219–229

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E (1996) A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 13(2):248–250

    CAS  PubMed  Google Scholar 

  162. Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clinical journal of the American Society of Nephrology: CJASN

  163. Subramanya AR, Yang CL, Zhu X, Ellison DH (2006) Dominant-negative regulation of WNK1 by its kidney-specific kinase-defective isoform. Am J Physiol Renal Physiol 290(3):F619–F624

    CAS  PubMed  Google Scholar 

  164. Sufit CR, Jamison RL (1983) Effect of acute potassium load on reabsorption in Henle’s loop in the rat. Am J Physiol 245(5 Pt 1):F569–F576

    CAS  PubMed  Google Scholar 

  165. Sun P, Yue P, Wang WH (2012) Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney. Am J Physiol Renal Physiol 302(6):F679–F687

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Susa K, Sohara E, Rai T, Zeniya M, Mori Y, Mori T, Chiga M, Nomura N, Nishida H, Takahashi D, Isobe K, Inoue Y, Takeishi K, Takeda N, Sasaki S, Uchida S (2014) Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet 23(19):5052–5060

    PubMed  Google Scholar 

  167. Suzuki H, Kondo K, Saruta T (1981) Effect of potassium chloride on the blood pressure in two-kidney, one clip Goldblatt hypertensive rats. Hypertension 3(5):566–573

    CAS  PubMed  Google Scholar 

  168. Suzuki H, Kondo K, Saruta T (1981) Inhibitory effect of potassium on blood pressure in DOCA salt hypertension in rats. Acta Endocrinol (Copenh) 97(4):525–532

    CAS  Google Scholar 

  169. Svetkey LP, Yarger WE, Feussner JR, DeLong E, Klotman PE (1987) Double-blind, placebo-controlled trial of potassium chloride in the treatment of mild hypertension. Hypertension 9(5):444–450

    CAS  PubMed  Google Scholar 

  170. Tannen RL (1983) Effects of potassium on blood pressure control. Ann Intern Med 98(5 Pt 2):773–780

    CAS  PubMed  Google Scholar 

  171. Tannen RL, Wedell E, Moore R (1973) Renal adaptation to a high potassium intake. the role of hydrogen ion. J Clin Invest 52(9):2089–2101

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Terker A, McCormick JA, Weinstein AM, Wang WH, Yang C-L, Ellison DH (2014) Chloride-sensing by WNK kinases mediates effects of dietary potassium on systemic ion balance. J Am Soc Nephrol 25:375A

    Google Scholar 

  173. Todkar A, Picard N, Loffing-Cueni D, Sorensen MV, Mihailova M, Nesterov V, Makhanova N, Korbmacher C, Wagner CA, Loffing J (2014) Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J Am Soc Nephrol

  174. Uchida S (2014) Regulation of blood pressure and renal electrolyte balance by Cullin-RING ligases. Curr Opin Nephrol Hypertens 23(5):487–493

    CAS  PubMed  Google Scholar 

  175. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S (2009) Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 297(3):F704–F712

    PubMed Central  CAS  PubMed  Google Scholar 

  176. van Buren M, Rabelink TJ, van Rijn HJ, Koomans HA (1992) Effects of acute NaCl, KCl and KHCO3 loads on renal electrolyte excretion in humans. Clin Sci (Lond) 83(5):567–574

    Google Scholar 

  177. van der Lubbe N, Lim CH, Fenton RA, Meima ME, Jan Danser AH, Zietse R, Hoorn EJ (2011) Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int 79(1):66–76

    PubMed  Google Scholar 

  178. van der Lubbe N, Lim CH, Meima ME, van Veghel R, Rosenbaek LL, Mutig K, Danser AH, Fenton RA, Zietse R, Hoorn EJ (2012) Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. Pflugers Arch 463(6):853–863

    PubMed Central  CAS  PubMed  Google Scholar 

  179. van der Lubbe N, Moes AD, Rosenbaek LL, Schoep S, Meima ME, Danser AH, Fenton RA, Zietse R, Hoorn EJ (2013) K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter. Am J Physiol Renal Physiol 305(8):F1177–F1188

    PubMed  Google Scholar 

  180. Vander AJ (1970) Direct effects of potassium on renin secretion and renal function. Am J Physiol 219(2):455–459

    CAS  PubMed  Google Scholar 

  181. Vio CP, Figueroa CD (1987) Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int 31(6):1327–1334

    CAS  PubMed  Google Scholar 

  182. Vitzthum H, Seniuk A, Schulte LH, Muller ML, Hetz H, Ehmke H (2014) Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice. J Physiol 592(Pt 5):1139–1157

    CAS  PubMed  Google Scholar 

  183. Wade JB, Fang L, Coleman RA, Liu J, Grimm PR, Wang T, Welling PA (2011) Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am J Physiol Renal Physiol 300(6):F1385–F1393

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Wade JB, Fang L, Liu J, Li D, Yang CL, Subramanya AR, Maouyo D, Mason A, Ellison DH, Welling PA (2006) WNK1 kinase isoform switch regulates renal potassium excretion. Proc Natl Acad Sci U S A 103(22):8558–8563

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J (2008) Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 294(6):F1373–F1380

    CAS  PubMed  Google Scholar 

  186. Wald H, Garty H, Palmer LG, Popovtzer MM (1998) Differential regulation of ROMK expression in kidney cortex and medulla by aldosterone and potassium. Am J Physiol 275(2 Pt 2):F239–F245

    CAS  PubMed  Google Scholar 

  187. Wall SM, Pech V (2010) Pendrin and sodium channels: relevance to hypertension. J Nephrol 23(Suppl 16):S118–S123

    PubMed  Google Scholar 

  188. Wang T, Giebisch G (1996) Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol 271(1 Pt 2):F143–F149

    CAS  PubMed  Google Scholar 

  189. Wang WH, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458(1):157–168

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Wang Z, Subramanya AR, Satlin LM, Pastor-Soler NM, Carattino MD, Kleyman TR (2013) Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase. Am J Physiol Cell Physiol 305(8):C846–C853

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Wei Y, Liao Y, Zavilowitz B, Ren J, Liu W, Chan P, Rohatgi R, Estilo G, Jackson EK, Wang WH, Satlin LM (2014) Angiotensin II type 2 receptor regulates ROMK-like K+ channel activity in the renal cortical collecting duct during high dietary K+ adaptation. Am J Physiol Renal Physiol 307(7):F833–F843

    CAS  PubMed  Google Scholar 

  192. Welling PA (2013) Regulation of renal potassium secretion: molecular mechanisms. Semin Nephrol 33(3):215–228

    CAS  PubMed  Google Scholar 

  193. Welling PA (2014) Rare mutations in renal sodium and potassium transporter genes exhibit impaired transport function. Curr Opin Nephrol Hypertens 23(1):1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Wen D, Cornelius RJ, Rivero-Hernandez D, Yuan Y, Li H, Weinstein AM, Sansom SC (2014) Relation between BK-alpha/beta4-mediated potassium secretion and ENaC-mediated sodium reabsorption. Kidney Int 86(1):139–145

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Wen D, Cornelius RJ, Yuan Y, Sansom SC (2013) Regulation of BK-alpha expression in the distal nephron by aldosterone and urine pH. Am J Physiol Renal Physiol 305(4):F463–F476

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293(5532):1107–1112

    CAS  PubMed  Google Scholar 

  197. Wingo CS, Seldin DW, Kokko JP, Jacobson HR (1982) Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J Clin Invest 70(3):579–586

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280(5):F786–F793

    CAS  PubMed  Google Scholar 

  199. Wu RS, Marx SO (2010) The BK potassium channel in the vascular smooth muscle and kidney: alpha- and beta-subunits. Kidney Int 78(10):963–974

    CAS  PubMed  Google Scholar 

  200. Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D (2002) Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 110(9):1263–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH (2005) WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci U S A 102(29):10315–10320

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111(7):1039–1045

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Yang SS, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, Uchida K, Lin SH, Moriguchi T, Shibuya H, Kondo Y, Sasaki S, Uchida S (2007) Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 5(5):331–344

    CAS  PubMed  Google Scholar 

  204. Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA (2003) Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 278(25):23066–23075

    CAS  PubMed  Google Scholar 

  205. Young DB, McCaa RE, Pan YJ, Guyton AC (1976) The natriuretic and hypotensive effects of potassium. Circ Res 38(6 Suppl 2):84–89

    CAS  PubMed  Google Scholar 

  206. Yu L, Cai H, Yue Q, Alli AA, Wang D, Al-Khalili O, Bao HF, Eaton DC (2013) WNK4 inhibition of ENaC is independent of Nedd4-2-mediated ENaC ubiquitination. Am J Physiol Renal Physiol 305(1):F31–F41

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Yue P, Sun P, Lin DH, Pan C, Xing W, Wang W (2011) Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels. Kidney Int 79(4):423–431

    CAS  PubMed  Google Scholar 

  208. Yue P, Zhang C, Lin DH, Sun P, Wang WH (2013) WNK4 inhibits Ca(2+)-activated big-conductance potassium channels (BK) via mitogen-activated protein kinase-dependent pathway. Biochim Biophys Acta 1833(10):2101–2110

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Zecevic M, Heitzmann D, Camargo SM, Verrey F (2004) SGK1 increases Na, K-ATP cell-surface expression and function in Xenopus laevis oocytes. Pflugers Arch 448(1):29–35

    CAS  PubMed  Google Scholar 

  210. Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH (2014) KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci U S A 111(32):11864–11869

    CAS  PubMed  Google Scholar 

  211. Zhang Z, Li M, Lu R, Alioua A, Stefani E, Toro L (2014) The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 289(37):25678–25689

    CAS  PubMed  Google Scholar 

  212. Zhuang J, Zhang X, Wang D, Li J, Zhou B, Shi Z, Gu D, Denson DD, Eaton DC, Cai H (2011) WNK4 kinase inhibits Maxi K channel activity by a kinase-dependent mechanism. Am J Physiol Renal Physiol 301(2):F410–F419

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The cited work of the authors was supported by a collaborative project grant from the Zurich Center for Integrative Human Physiology (ZIHP), by research funds from the Swiss National Centre for Competence in Research “Kidney.CH,” and by a project grant (310030_143929/1) from the Swiss National Science Foundation. David Penton is a postdoctoral fellow of the Marie-Curie Fellowship program within the European Community’s 7th framework program under the grant agreement no. 608847.

Conflict of interest

No competing financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Loffing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penton, D., Czogalla, J. & Loffing, J. Dietary potassium and the renal control of salt balance and blood pressure. Pflugers Arch - Eur J Physiol 467, 513–530 (2015). https://doi.org/10.1007/s00424-014-1673-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1673-1

Keywords

Navigation