Skip to main content
Log in

The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Aldosterone binds to the mineralocorticoid receptor (MR) and increases renal Na+ reabsorption via up-regulation of the epithelial Na+ channel (ENaC) and the Na+-K+-ATPase in the collecting system (CS) and possibly also via the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). However, whether aldosterone directly regulates NCC via MR or indirectly through systemic alterations remains controversial. We used mice with deletion of MR in ∼20 % of renal tubule cells (MR/X mice), in which MR-positive (MRwt) and -negative (MRko) cells can be studied side-by-side in the same physiological context. Adult MR/X mice showed similar mRNA and protein levels of renal ion transport proteins to control mice. In MR/X mice, no differences in NCC abundance and phosphorylation was seen between MRwt and MRko cells and dietary Na+ restriction up-regulated NCC to similar extent in both groups of cells. In contrast, MRko cells in the CS did not show any detectable alpha-ENaC abundance or apical targeting of ENaC neither on control diet nor in response to dietary Na+ restriction. Furthermore, Na+-K+-ATPase expression was unaffected in MRko cells of the DCT, while it was lost in MRko cells of the CS. In conclusion, MR is crucial for ENaC and Na+-K+-ATPase regulation in the CS, but is dispensable for NCC and Na+-K+-ATPase regulation in the DCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH (2001) Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(−)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol 12:1335–1341

    CAS  PubMed  Google Scholar 

  2. Ackermann D, Gresko N, Carrel M, Loffing-Cueni D, Habermehl D, Gomez-Sanchez C, Rossier BC, Loffing J (2010) In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: differential effect of corticosteroids along the distal tubule. Am J Physiol Renal Physiol 299:F1473–F1485

    Article  CAS  PubMed  Google Scholar 

  3. Berger S, Bleich M, Schmid W, Greger R, Schutz G (2000) Mineralocorticoid receptor knockout mice: lessons on Na + metabolism. Kidney Int 57:1295–1298

    Article  CAS  PubMed  Google Scholar 

  4. Bleich M, Warth R, Schmidt-Hieber M, Schulz-Baldes A, Hasselblatt P, Fisch D, Berger S, Kunzelmann K, Kriz W, Schütz G, Greger R (1999) Rescue of the mineralocorticoid receptor knock-out mouse. Pflugers Arch 438:245–254

    Article  CAS  PubMed  Google Scholar 

  5. Bostanjoglo M, Reeves WB, Reilly RF, Velázquez H, Robertson N, Litwack G, Morsing P, Dørup J, Bachmann S, Ellison DH (1998) 11Beta-hydroxysteroid dehydrogenase, mineralocorticoid receptor, and thiazide-sensitive Na-Cl cotransporter expression by distal tubules. J Am Soc Nephrol 9:1347–1358

    CAS  PubMed  Google Scholar 

  6. Canonica J, Sergi C, Maillard M, Klusonova P, Odermatt A, Koesters R, Loffing-Cueni D, Loffing J, Rossier B, Frateschi S, Hummler E (2016) Adult nephron-specific MR-deficient mice develop a severe renal PHA-1 phenotype. Pflugers Arch 1–14.

  7. Carranza ML, Féraille E, Favre H (1996) Protein kinase C-dependent phosphorylation of Na(+)-K(+)-ATPase alpha-subunit in rat kidney cortical tubules. Am J Physiol Cell Physiol 271:C136–C143

    CAS  Google Scholar 

  8. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP (1998) Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19:279–281

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Sanchez CE, de Rodriguez AF, Romero DG, Estess J, Warden MP, Gomez-Sanchez MT, Gomez-Sanchez EP (2006) Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology 147:1343–1348

    Article  CAS  PubMed  Google Scholar 

  10. Hunter RW, Ivy JR, Flatman PW, Kenyon CJ, Craigie E, Mullins LJ, Bailey MA, Mullins JJ (2014) Hypertrophy in the distal convoluted tubule of an 11β-hydroxysteroid dehydrogenase type 2 knockout model. J Am Soc Nephrol 26:1537–1548

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA (1998) The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A 95:14552–14557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ko B, Mistry AC, Hanson L, Mallick R, Wynne BM, Thai TL, Bailey JL, Klein JD, Hoover RS (2013) Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol 305:F645–F652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee DH, Maunsbach AB, Riquier-Brison AD, Nguyen MTX, Fenton RA, Bachmann S, Yu AS, McDonough AA (2013) Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties. Am J Physiol Cell Physiol 304:C147–C163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loffing-Cueni D, Flores SY, Sauter D (2006) Dietary sodium intake regulates the ubiquitin-protein ligase Nedd4-2 in the renal collecting system. J Am Soc Nephrol 17:1264–1274

    Article  CAS  PubMed  Google Scholar 

  15. Martinerie L, Viengchareun S, Delezoide A-L, Jaubert F, Sinico M, Prevot S, Boileau P, Meduri G, Lombès M (2009) Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonates. Endocrinology 150:4414–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nielsen J, Kwon T-H, Masilamani S, Beutler K, Hager H, Nielsen S, Knepper MA (2002) Sodium transporter abundance profiling in kidney: effect of spironolactone. Am J Physiol Renal Physiol 283:F923–F933

    Article  PubMed  Google Scholar 

  17. Picard N, Trompf K, Yang C-L, Miller RL, Carrel M, Loffing-Cueni D, Fenton RA, Ellison DH, Loffing J (2014) Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J Am Soc Nephrol 25:511–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quinn SA, Harvey BJ, Thomas W (2014) Rapid aldosterone actions on epithelial sodium channel trafficking and cell proliferation. Steroids 81:43–48

    Article  CAS  PubMed  Google Scholar 

  19. Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    CAS  PubMed  Google Scholar 

  20. Rojas-Vega L, Gamba G (2016) Mini-review: regulation of the renal NaCl cotransporter by hormones. Am J Physiol Renal Physiol 310:F10–F14

    PubMed  Google Scholar 

  21. Ronzaud C, Loffing J, Bleich M, Gretz N, Gröne H-J, Schütz G, Berger S (2007) Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J Am Soc Nephrol 18:1679–1687

    Article  CAS  PubMed  Google Scholar 

  22. Rossier BC, Staub O, Hummler E (2013) Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett 587:1929–1941

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt K, Ripper M, Tegtmeier I, Humberg E, Sterner C, Reichold M, Warth R, Bandulik S (2013) Dynamics of renal electrolyte excretion in growing mice. Nephron Physiol 124:7–13

    Article  CAS  PubMed  Google Scholar 

  24. Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23:5080–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing-Cueni D, Loffing J (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83:811–824

    Article  CAS  PubMed  Google Scholar 

  26. Stanton BA, Kaissling B (1989) Regulation of renal ion transport and cell growth by sodium. Am J Physiol 257:F1–F10

    CAS  PubMed  Google Scholar 

  27. Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V (2000) Regulation of the epithelial Na + channel by Nedd4 and ubiquitination. Kidney Int 57:809–815

    Article  CAS  PubMed  Google Scholar 

  28. Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH (2015) Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol 1–10.

  29. Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang W-H, Yang C-L, Ellison DH (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566

    CAS  PubMed  Google Scholar 

  31. Todkar A, Picard N, Loffing-Cueni D, Sorensen MV, Mihailova M, Nesterov V, Makhanova N, Korbmacher C, Wagner CA, Loffing J (2015) Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J Am Soc Nephrol 26:425–438

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vallon V, Huang DY, Grahammer F, Wyatt AW, Osswald H, Wulff P, Kuhl D, Lang F (2005) SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. Am J Physiol Regul Integr Comp Physiol 289:R395–R401

    Article  CAS  PubMed  Google Scholar 

  33. van der Lubbe N, Lim CH, Fenton RA, Meima ME, Danser AHJ, Zietse R, Hoorn EJ (2010) Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int 79:66–76

    Article  PubMed  Google Scholar 

  34. van der Lubbe N, Lim CH, Meima ME, van Veghel R, Rosenbaek LL, Mutig K, Danser AHJ, Fenton RA, Zietse R, Hoorn EJ (2012) Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. Pflugers Arch 463:853–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Velázquez H, Bartiss A, Bernstein P, Ellison DH (1996) Adrenal steroids stimulate thiazide-sensitive NaCl transport by rat renal distal tubules. Am J Physiol 270:F211–F219

    PubMed  Google Scholar 

  36. Vinciguerra M, Deschênes G, Hasler U, Mordasini D, Rousselot M, Doucet A, Vandewalle A, Martin P-Y, Féraille E (2003) Intracellular Na + controls cell surface expression of Na, K-ATPase via a cAMP-independent PKA pathway in mammalian kidney collecting duct cells. Mol Biol Cell 14:2677–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J (2008) Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 294:F1373–F1380

    Article  CAS  PubMed  Google Scholar 

  38. Wang YB, Leroy V, Maunsbach AB, Doucet A, Hasler U, Dizin E, Ernandez T, de Seigneux S, Martin PY, Féraille E (2014) Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na, K-ATPase in collecting duct principal cells. J Am Soc Nephrol 25:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Günter Schütz and Stefan Berger, Burkhard Becher, Celso E. Gomez-Sanchez, and Eric Feraille for kindly providing us with the MRlox/lox mouse line, the cmv-cre mouse line, the anti-MR antibodies, and the anti-Na+-K+-ATPase antibody, respectively. The expert technical assistance by Monique Carrel and Michèle Heidemeyer is gratefully acknowledged.

Grants

This work was supported by the Swiss National Centre for Competence in Research “Kidney.CH” and by a project grant (310030_143929/1) from the Swiss National Science Foundation. David Penton is a postdoctoral fellow of the Marie-Curie program within the European Union’s 7th Framework Program for Research, Technological Development and Demonstration under the grant agreement no. 608847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Loffing.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czogalla, J., Vohra, T., Penton, D. et al. The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion. Pflugers Arch - Eur J Physiol 468, 849–858 (2016). https://doi.org/10.1007/s00424-016-1798-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1798-5

Keywords

Navigation