Skip to main content

Advertisement

Log in

Macrophage physiology in the eye

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The eye is a complex sensory organ composed of a range of tissue types including epithelia, connective tissue, smooth muscle, vascular and neural tissue. While some components of the eye require a high level of transparency to allow light to pass through unobstructed, other tissues are characterized by their dense pigmentation, which functions to absorb light and thus control its passage through the ocular structures. Macrophages are present in all ocular tissues, from the cornea at the anterior surface through to the choroid/sclera at the posterior pole. This review will describe the current understanding of the distribution, phenotype, and physiological role of ocular macrophages, and provide a summary of evidence pertaining to their proposed role during pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. doi:10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  2. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    Article  CAS  PubMed  Google Scholar 

  3. Alliot F, Lecain E, Grima B, Pessac B (1991) Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci U S A 88:1541–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alt C, Runnels JM, Mortensen LJ, Zaher W, Lin CP (2014) In vivo imaging of microglia turnover in the mouse retina after ionizing radiation and dexamethasone treatment. Invest Ophthalmol Vis Sci 55:5314–5319. doi:10.1167/iovs.14-14254

    Article  PubMed  Google Scholar 

  5. Ashwell K (1989) Development of microglia in the albino rabbit retina. J Comp Neurol 287:286–301. doi:10.1002/cne.902870303

    Article  CAS  PubMed  Google Scholar 

  6. Brissette-Storkus CS, Reynolds SM, Lepisto AJ, Hendricks RL (2002) Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci 43:2264–2271

    PubMed  PubMed Central  Google Scholar 

  7. Bronkhorst IH, Jager MJ (2013) Inflammation in uveal melanoma. Eye (Lond) 27:217–223. doi:10.1038/eye.2012.253

    Article  CAS  Google Scholar 

  8. Butler TL, McMenamin PG (1996) Resident and infiltrating immune cells in the uveal tract in the early and late stages of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 37:2195–2210

    CAS  PubMed  Google Scholar 

  9. Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S (2006) Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 47:3595–3602. doi:10.1167/iovs.05-1522

    Article  PubMed  Google Scholar 

  10. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925. doi:10.1136/bjo.2009.165563

    Article  CAS  PubMed  Google Scholar 

  11. Chinnery HR, Carlson EC, Sun Y, Lin M, Burnett SH, Perez VL, McMenamin PG, Pearlman E (2009) Bone marrow chimeras and c-fms conditional ablation (Mafia) mice reveal an essential role for resident myeloid cells in lipopolysaccharide/TLR4-induced corneal inflammation. J Immunol 182:2738–2744. doi:10.4049/jimmunol.0803505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chinnery HR, Humphries T, Clare A, Dixon AE, Howes K, Moran CB, Scott D, Zakrzewski M, Pearlman E, McMenamin PG (2008) Turnover of bone marrow-derived cells in the irradiated mouse cornea. Immunology 125:541–548. doi:10.1111/j.1365-2567.2008.02868.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chinnery HR, Leong CM, Chen W, Forrester JV, McMenamin PG (2015) TLR9 and TLR7/8 activation induces formation of keratic precipitates and giant macrophages in the mouse cornea. J Leukoc Biol 97:103–110. doi:10.1189/jlb.3AB0414-216R

    Article  PubMed  CAS  Google Scholar 

  14. Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180:5779–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chinnery HR, Ruitenberg MJ, Plant GW, Pearlman E, Jung S, McMenamin PG (2007) The chemokine receptor CX3CR1 mediates homing of MHC class II-positive cells to the normal mouse corneal epithelium. Invest Ophthalmol Vis Sci 48:1568–1574. doi:10.1167/iovs.06-0746

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050. doi:10.1172/jci20465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dando SJ, Naranjo Golborne C, Chinnery HR, Ruitenberg MJ, McMenamin PG (2016) A case of mistaken identity: CD11c-eYFP(+) cells in the normal mouse brain parenchyma and neural retina display the phenotype of microglia, not dendritic cells. Glia 64:1331–1349. doi:10.1002/glia.23005

    Article  PubMed  Google Scholar 

  18. Diaz-Araya CM, Provis JM, Penfold PL, Billson FA (1995) Development of microglial topography in human retina. J Comp Neurol 363:53–68. doi:10.1002/cne.903630106

    Article  CAS  PubMed  Google Scholar 

  19. Ericsson C, Seregard S, Bartolazzi A, Levitskaya E, Ferrone S, Kiessling R, Larsson O (2001) Association of HLA class I and class II antigen expression and mortality in uveal melanoma. Invest Ophthalmol Vis Sci 42:2153–2156

    CAS  PubMed  Google Scholar 

  20. Evans JR (2001) Risk factors for age-related macular degeneration. Prog Retin Eye Res 20:227–253

    Article  CAS  PubMed  Google Scholar 

  21. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840. doi:10.1182/blood-2009-12-257832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6:e15973. doi:10.1371/journal.pone.0015973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forrester JV, Dick AD, McMenamin PG, Lee WL (2002) The eye: basic sciences in practice. Saunders, Edinburgh

    Google Scholar 

  24. Forrester JV, McMenamin PG, Holthouse I, Lumsden L, Liversidge J (1994) Localization and characterization of major histocompatibility complex class II-positive cells in the posterior segment of the eye: implications for induction of autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 35:64–77

    CAS  PubMed  Google Scholar 

  25. Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramirez AI, Salinas-Navarro M, Ortin-Martinez A, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramirez JM (2012) IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 9:92. doi:10.1186/1742-2094-9-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45. doi:10.3389/fncel.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, Geissmann F, Priller J, Rossi FM, Bechmann I, Kerschensteiner M, Linnarsson S, Jung S, Prinz M (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:797–805. doi:10.1038/ni.3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gregerson DS, Yang J (2003) CD45-positive cells of the retina and their responsiveness to in vivo and in vitro treatment with IFN-gamma or anti-CD40. Invest Ophthalmol Vis Sci 44:3083–3093

    Article  PubMed  Google Scholar 

  30. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232. doi:10.1073/pnas.0501536102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamrah P, Huq SO, Liu Y, Zhang Q, Dana MR (2003) Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leukoc Biol 74:172–178

    Article  CAS  PubMed  Google Scholar 

  32. Hamrah P, Liu Y, Zhang Q, Dana MR (2003) Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol 121:1132–1140. doi:10.1001/archopht.121.8.1132

    Article  PubMed  Google Scholar 

  33. Hamrah P, Liu Y, Zhang Q, Dana MR (2003) The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci 44:581–589

    Article  PubMed  Google Scholar 

  34. Herbomel P, Thisse B, Thisse C (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238:274–288. doi:10.1006/dbio.2001.0393

    Article  CAS  PubMed  Google Scholar 

  35. Hume DA, Perry VH, Gordon S (1983) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97:253–257

    Article  CAS  PubMed  Google Scholar 

  36. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H (2008) Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 49:4162–4168. doi:10.1167/iovs.08-1738

    Article  PubMed  Google Scholar 

  38. Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, Neumann H, Weber BH, Rupprecht R, Langmann T (2014) Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation 11:3. doi:10.1186/1742-2094-11-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kezic J, McMenamin PG (2008) Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 84:721–729. doi:10.1189/jlb.0308166

    Article  CAS  PubMed  Google Scholar 

  40. Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG (2008) Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci 49:1599–1608. doi:10.1167/iovs.07-0953

    Article  PubMed  Google Scholar 

  41. Kezic JM, McMenamin PG (2013) The effects of CX3CR1 deficiency and irradiation on the homing of monocyte-derived cell populations in the mouse eye. PLoS One 8:e68570. doi:10.1371/journal.pone.0068570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389. doi:10.1126/science.1109557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knickelbein JE, Watkins SC, McMenamin PG, Hendricks RL (2009) Stratification of antigen-presenting cells within the normal cornea. Ophthalmol Eye Dis 1:45–54

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Koso H, Tsuhako A, Lai CY, Baba Y, Otsu M, Ueno K, Nagasaki M, Suzuki Y, Watanabe S (2016) Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina. Glia 64:2005–2024. doi:10.1002/glia.23038

    Article  PubMed  Google Scholar 

  45. Krause L, Coupland SE, Hoffmann F (1996) The behaviour of ED1- and ED2-positive cells in the rat iris and choroid following penetrating keratoplasty and cyclosporin A therapy. Graefes Arch Clin Exp Ophthalmol 234(Suppl 1):S149–S158

    Article  PubMed  Google Scholar 

  46. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089–1102. doi:10.1084/jem.20081605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar A, Zhao L, Fariss RN, McMenamin PG, Wong WT (2014) Vascular associations and dynamic process motility in perivascular myeloid cells of the mouse choroid: implications for function and senescent change. Invest Ophthalmol Vis Sci 55:1787–1796. doi:10.1167/iovs.13-13522

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee JE, Liang KJ, Fariss R, Wong WT (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci:4169–4176. doi:10.1167/iovs.08-2076

  49. Li L, Eter N, Heiduschka P (2015) The microglia in healthy and diseased retina. Exp Eye Res 136:116–130. doi:10.1016/j.exer.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Shen S, Urso D, Kalique S, Park SH, Sharafieh R, O’Rourke J, Cone RE (2006) Phenotypic and immunoregulatory characteristics of monocytic iris cells. Immunology 117:566–575. doi:10.1111/j.1365-2567.2006.02333.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202. doi:10.1016/j.devcel.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Song Y, Zhao L, Gaidosh G, Laties AM, Wen R (2008) Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc 3:1703–1708. doi:10.1038/nprot.2008.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Burns AR, Rumbaut RE, Smith CW (2007) Gamma delta T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion. Am J Pathol 171:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Burns AR, Smith CW (2006) Two waves of neutrophil emigration in response to corneal epithelial abrasion: distinct adhesion molecule requirements. Invest Ophthalmol Vis Sci 47:1947–1955

    Article  PubMed  Google Scholar 

  55. Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, Wong WT (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 50:4444–4451. doi:10.1167/iovs.08-3357

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lu JM, Zhou ZY, Zhang XR, Li XL, Wang HF, Song XJ (2010) A preliminary study of mesenchymal stem cell-like cells derived from murine corneal stroma. Graefes Arch Clin Exp Ophthalmol 248:1279–1285. doi:10.1007/s00417-010-1367-0

    Article  PubMed  Google Scholar 

  57. Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW, Bainbridge JW, Ali RR, MacLaren RE (2009) The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 50:5934–5943. doi:10.1167/iovs.09-3462

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma W, Wong WT (2016) Aging changes in retinal microglia and their relevance to age-related retinal disease. Adv Exp Med Biol 854:73–78. doi:10.1007/978-3-319-17121-0_11

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maat W, Ly LV, Jordanova ES, de Wolff-Rouendaal D, Schalij-Delfos NE, Jager MJ (2008) Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. Invest Ophthalmol Vis Sci 49:505–510. doi:10.1167/iovs.07-0786

    Article  PubMed  Google Scholar 

  60. Maneu V, Noailles A, Megias J, Gomez-Vicente V, Carpena N, Gil ML, Gozalbo D, Cuenca N (2014) Retinal microglia are activated by systemic fungal infection. Invest Ophthalmol Vis Sci 55:3578–3585. doi:10.1167/iovs.14-14051

    Article  PubMed  Google Scholar 

  61. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372. doi:10.1172/jci23874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maruyama K, Nakazawa T, Cursiefen C, Maruyama Y, Van Rooijen N, D’Amore PA, Kinoshita S (2012) The maintenance of lymphatic vessels in the cornea is dependent on the presence of macrophages. Invest Ophthalmol Vis Sci 53:3145–3153. doi:10.1167/iovs.11-8010

    Article  CAS  PubMed  Google Scholar 

  63. May CA (1999) Mast cell heterogeneity in the human uvea. Histochem Cell Biol 112:381–386

    Article  CAS  PubMed  Google Scholar 

  64. Mayer WJ, Irschick UM, Moser P, Wurm M, Huemer HP, Romani N, Irschick EU (2007) Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. Invest Ophthalmol Vis Sci 48:4459–4467

    Article  PubMed  Google Scholar 

  65. McLeod DS, Bhutto I, Edwards MM, Silver RE, Seddon JM, Lutty GA (2016) Distribution and quantification of choroidal macrophages in human eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 57:5843–5855. doi:10.1167/iovs.16-20049

    Article  PubMed  PubMed Central  Google Scholar 

  66. McMenamin PG (1999) Dendritic cells and macrophages in the uveal tract of the normal mouse eye. Br J Ophthalmol 83:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McMenamin PG (1997) The distribution of immune cells in the uveal tract of the normal eye. Eye 11(Pt 2):183–193

    Article  PubMed  Google Scholar 

  68. McMenamin PG (2000) Optimal methods for preparation and immunostaining of iris, ciliary body, and choroidal wholemounts. Invest Ophthalmol Vis Sci 41:3043–3048

    CAS  PubMed  Google Scholar 

  69. McMenamin PG, Crewe J, Morrison S, Holt PG (1994) Immunomorphologic studies of macrophages and MHC class II-positive dendritic cells in the iris and ciliary body of the rat, mouse, and human eye. Invest Ophthalmol Vis Sci 35:3234–3250

    CAS  PubMed  Google Scholar 

  70. McMenamin PG, Djano J, Wealthall R, Griffin BJ (2002) Characterization of the macrophages associated with the tunica vasculosa lentis of the rat eye. Invest Ophthalmol Vis Sci 43:2076–2082

    PubMed  Google Scholar 

  71. McMenamin PG, Holthouse I, Holt PG (1992) Class II major histocompatibility complex (Ia) antigen-bearing dendritic cells within the iris and ciliary body of the rat eye: distribution, phenotype and relation to retinal microglia. Immunology 77:385–393

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McMenamin PG, Lee WR (1986) Ultrastructural pathology of melanomalytic glaucoma. Br J Ophthalmol 70:895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mendes-Jorge L, Ramos D, Luppo M, Llombart C, Alexandre-Pires G, Nacher V, Melgarejo V, Correia M, Navarro M, Carretero A, Tafuro S, Rodriguez-Baeza A, Esperanca-Pina JA, Bosch F, Ruberte J (2009) Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest Ophthalmol Vis Sci 50:5997–6005. doi:10.1167/iovs.09-3515

    Article  PubMed  Google Scholar 

  74. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553. doi:10.1038/nn2015

    Article  CAS  PubMed  Google Scholar 

  75. Muther PS, Semkova I, Schmidt K, Abari E, Kuebbeler M, Beyer M, Abken H, Meyer KL, Kociok N, Joussen AM (2010) Conditions of retinal glial and inflammatory cell activation after irradiation in a GFP-chimeric mouse model. Invest Ophthalmol Vis Sci 51:4831–4839. doi:10.1167/iovs.09-4923

    Article  PubMed  Google Scholar 

  76. Nakamura T, Ishikawa F, Sonoda KH, Hisatomi T, Qiao H, Yamada J, Fukata M, Ishibashi T, Harada M, Kinoshita S (2005) Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci 46:497–503

    Article  PubMed  Google Scholar 

  77. Naumann GOH, Apple DJ (1986) Pathology of the eye. Springer Verlag, New York

    Book  Google Scholar 

  78. Navascues J, Moujahid A, Quesada A, Cuadros MA (1994) Microglia in the avian retina: immunocytochemical demonstration in the adult quail. J Comp Neurol 350:171–186. doi:10.1002/cne.903500203

    Article  CAS  PubMed  Google Scholar 

  79. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  80. O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Scientific reports 6:20636. doi:10.1038/srep20636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Onfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513

    Article  PubMed  Google Scholar 

  82. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. doi:10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  83. Penfold P, Killingsworth M, Sarks S (1984) An ultrastructural study of the role of leucocytes and fibroblasts in the breakdown of Bruch’s membrane. Aust J Ophthalmol 12:23–31

    Article  CAS  PubMed  Google Scholar 

  84. Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430. doi:10.1074/jbc.M011004200

    Article  CAS  PubMed  Google Scholar 

  85. Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E (1997) Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 65:555–568. doi:10.1006/exer.1997.0365

    Article  CAS  PubMed  Google Scholar 

  86. Qiao H, Hisatomi T, Sonoda KH, Kura S, Sassa Y, Kinoshita S, Nakamura T, Sakamoto T, Ishibashi T (2005) The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol 89:513–517. doi:10.1136/bjo.2004.050658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramke M, Zhou X, Materne EC, Rajaiya J, Chodosh J (2016) Resident corneal c-fms(+) macrophages and dendritic cells mediate early cellular infiltration in adenovirus keratitis. Exp Eye Res 147:144–147. doi:10.1016/j.exer.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  88. Ramkumar HL, Zhang J, Chan CC (2010) Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog Retin Eye Res 29:169–190. doi:10.1016/j.preteyeres.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rao NA, Kimoto T, Zamir E, Giri R, Wang R, Ito S, Pararajasegaram G, Read RW, Wu GS (2003) Pathogenic role of retinal microglia in experimental uveoretinitis. Invest Ophthalmol Vis Sci 44:22–31

    Article  PubMed  Google Scholar 

  90. Rehberg M, Nekolla K, Sellner S, Praetner M, Mildner K, Zeuschner D, Krombach F (2016) Intercellular transport of nanomaterials is mediated by membrane nanotubes in vivo. Small (Weinheim an der Bergstrasse, Germany) 12:1882–1890. 10.1002/smll.201503606

  91. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  92. Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C (2011) A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One 6:e15846. doi:10.1371/journal.pone.0015846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168:1848–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Santos AM, Calvente R, Tassi M, Carrasco MC, Martin-Oliva D, Marin-Teva JL, Navascues J, Cuadros MA (2008) Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 506:224–239. doi:10.1002/cne.21538

    Article  PubMed  Google Scholar 

  95. Sarks S, Cherepanoff S, Killingsworth M, Sarks J (2007) Relationship of basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration. Invest Ophthalmol Vis Sci 48:968–977. doi:10.1167/iovs.06-0443

    Article  PubMed  Google Scholar 

  96. Schlereth SL, Kremers S, Schrodl F, Cursiefen C, Heindl LM (2016) Characterization of antigen-presenting macrophages and dendritic cells in the healthy human sclera. Invest Ophthalmol Vis Sci 57:4878–4885. doi:10.1167/iovs.15-18552

    Article  CAS  PubMed  Google Scholar 

  97. Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, Grimm C, Langmann T (2015) Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 12:201. doi:10.1186/s12974-015-0422-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Schraermeyer M, Schnichels S, Julien S, Heiduschka P, Bartz-Schmidt KU, Schraermeyer U (2009) Ultrastructural analysis of the pigment dispersion syndrome in DBA/2J mice. Graefes Arch Clin Exp Ophthalmol 247:1493–1504. doi:10.1007/s00417-009-1146-y

    Article  PubMed  Google Scholar 

  99. Seyed-Razavi Y, Chinnery HR, McMenamin PG (2014) A novel association between resident tissue macrophages and nerves in the peripheral stroma of the murine cornea. Invest Ophthalmol Vis Sci 55:1313–1320. doi:10.1167/iovs.13-12995

    Article  CAS  PubMed  Google Scholar 

  100. Seyed-Razavi Y, Hickey MJ, Kuffova L, McMenamin PG, Chinnery HR (2013) Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction. Immunol Cell Biol 91:89–95. doi:10.1038/icb.2012.52

    Article  CAS  PubMed  Google Scholar 

  101. Shao H, Scott SG, Nakata C, Hamad AR, Chakravarti S (2013) Extracellular matrix protein lumican promotes clearance and resolution of Pseudomonas aeruginosa keratitis in a mouse model. PLoS One 8:e54765. doi:10.1371/journal.pone.0054765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Slegers TP, Broersma L, van Rooijen N, Hooymans JM, van Rij G, van der Gaag R (2004) Macrophages play a role in the early phase of corneal allograft rejection in rats. Transplantation 77:1641–1646

    Article  PubMed  Google Scholar 

  103. Slegers TP, van der Gaag R, van Rooijen N, van Rij G, Streilein JW (2003) Effect of local macrophage depletion on cellular immunity and tolerance evoked by corneal allografts. Curr Eye Res 26:73–79

    Article  PubMed  Google Scholar 

  104. Sosnova M, Bradl M, Forrester JV (2005) CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells 23:507–515

    Article  CAS  PubMed  Google Scholar 

  105. Sun Y, Karmakar M, Roy S, Ramadan RT, Williams SR, Howell S, Shive CL, Han Y, Stopford CM, Rietsch A, Pearlman E (2010) TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol 185:4272–4283. doi:10.4049/jimmunol.1000874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tay SS, Roediger B, Tong PL, Tikoo S, Weninger W (2014) The skin-resident immune network. Current dermatology reports 3:13–22. doi:10.1007/s13671-013-0063-9

    Article  PubMed  Google Scholar 

  107. Thill M, Schlagner K, Altenahr S, Ergun S, Faragher RG, Kilic N, Bednarz J, Vohwinkel G, Rogiers X, Hossfeld DK, Richard G, Gehling UM (2007) A novel population of repair cells identified in the stroma of the human cornea. Stem Cells Dev 16:733–745. doi:10.1089/scd.2006.0084

    Article  CAS  PubMed  Google Scholar 

  108. Ueno H, Tamai A, Iyota K, Moriki T (1989) Electron microscopic observation of the cells floating in the anterior chamber in a case of phacolytic glaucoma. Jpn J Ophthalmol 33:103–113

    CAS  PubMed  Google Scholar 

  109. Vagaja NN, Chinnery HR, Binz N, Kezic JM, Rakoczy EP, McMenamin PG (2012) Changes in murine hyalocytes are valuable early indicators of ocular disease. Invest Ophthalmol Vis Sci 53:1445–1451. doi:10.1167/iovs.11-8601

    Article  PubMed  Google Scholar 

  110. van Essen TH, van Pelt SI, Bronkhorst IH, Versluis M, Nemati F, Laurent C, Luyten GP, van Hall T, van den Elsen PJ, van der Velden PA, Decaudin D, Jager MJ (2016) Upregulation of HLA expression in primary uveal melanoma by infiltrating leukocytes. PLoS One 11:e0164292. doi:10.1371/journal.pone.0164292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    Article  CAS  PubMed  Google Scholar 

  112. Wang JW, Chen SD, Zhang XL, Jonas JB (2016) Retinal microglia in glaucoma. J Glaucoma 25:459–465. doi:10.1097/ijg.0000000000000200

    Article  PubMed  Google Scholar 

  113. Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, Wong WT (2014) Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 34:3793–3806. doi:10.1523/jneurosci.3153-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang M, Wong WT (2014) Microglia-Muller cell interactions in the retina. Adv Exp Med Biol 801:333–338. doi:10.1007/978-1-4614-3209-8_42

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS, Gan WB, Roger JE, Wong WT (2016) Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci 36:2827–2842. doi:10.1523/jneurosci.3575-15.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wobmann PR, Fine BS (1972) The clump cells of Koganei. A light and electron microscopic study. Am J Ophthalmol 73:90–101

    Article  CAS  PubMed  Google Scholar 

  118. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368. doi:10.1016/j.preteyeres.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  119. Xu H, Chen M, Reid DM, Forrester JV (2007) LYVE-1-positive macrophages are present in normal murine eyes. Invest Ophthalmol Vis Sci 48:2162–2171. doi:10.1167/iovs.06-0783

    Article  PubMed  Google Scholar 

  120. Yamagami S, Usui T, Amano S, Ebihara N (2005) Bone marrow-derived cells in mouse and human cornea. Cornea 24:S71–S74

    Article  PubMed  Google Scholar 

  121. You IC, Coursey TG, Bian F, Barbosa FL, de Paiva CS, Pflugfelder SC (2015) Macrophage phenotype in the ocular surface of experimental murine dry eye disease. Arch Immunol Ther Exp 63:299–304. doi:10.1007/s00005-015-0335-0

    Article  CAS  Google Scholar 

  122. Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, Fariss RN, Wong WT (2016) Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 64:1479–1491. doi:10.1002/glia.23016

    Article  PubMed  Google Scholar 

  123. Zandi S, Nakao S, Chun KH, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S, Taher M, Melhorn MI, Schering A, Gatti F, Tezza S, Xie F, Vergani A, Yoshida S, Ishikawa K, Yamaguchi M, Sasaki F, Schmidt-Ullrich R, Hata Y, Enaida H, Yuzawa M, Yokomizo T, Kim YB, Sweetnam P, Ishibashi T, Hafezi-Moghadam A (2015) ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep 10:1173–1186. doi:10.1016/j.celrep.2015.01.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT (2015) Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO molecular medicine 7:1179–1197. doi:10.15252/emmm.201505298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou D, Chen YT, Chen F, Gallup M, Vijmasi T, Bahrami AF, Noble LB, van Rooijen N, McNamara NA (2012) Critical involvement of macrophage infiltration in the development of Sjogren’s syndrome-associated dry eye. Am J Pathol 181:753–760. doi:10.1016/j.ajpath.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zinkernagel MS, Chinnery HR, Ong ML, Petitjean C, Voigt V, McLenachan S, McMenamin PG, Hill GR, Forrester JV, Wikstrom ME, Degli-Esposti MA (2013) Interferon gamma-dependent migration of microglial cells in the retina after systemic cytomegalovirus infection. Am J Pathol 182:875–885. doi:10.1016/j.ajpath.2012.11.031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for HRC: National Health and Medical Research Council APP 1042612, PGM: National Health and Medical Research Council APP 1069979, and SD: Rebecca L. Cooper Medical Research Foundation APP 10470. The authors acknowledge Dr. Cecilia Naranjo Golborne for her excellent confocal microscopy skills; the Florey Advanced Microscopy Facility at The Florey Institute of Neuroscience & Mental Health Facility for provision of instrumentation, training, and general support and the facilities, scientific, and technical assistance of Monash Micro Imaging, Monash Histology Platform, and Monash Flow Core, Monash University, Victoria, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly R Chinnery.

Additional information

This article is part of the special issue on macrophages in tissue homeostasis in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnery, H.R., McMenamin, P.G. & Dando, S.J. Macrophage physiology in the eye. Pflugers Arch - Eur J Physiol 469, 501–515 (2017). https://doi.org/10.1007/s00424-017-1947-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1947-5

Keywords

Navigation