Skip to main content
Log in

Acute regulated expression of pendrin in human urinary exosomes

  • Organ Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

It is well known that pendrin, an apical Cl/HCO3 exchanger in type B intercalated cells, is modulated by chronic acid-base disturbances and electrolyte intake. To study this adaptation further at the acute level, we analyzed urinary exosomes from individuals subjected to oral acute acid, alkali, and NaCl loading. Acute oral NH4Cl loading (n = 8) elicited systemic acidemia with a drop in urinary pH and an increase in urinary NH4 excretion. Nadir urinary pH was achieved 5 h after NH4Cl loading. Exosomal pendrin abundance was dramatically decreased at 3 h after acid loading. In contrast, after acute equimolar oral NaHCO3 loading (n = 8), urinary and venous blood pH rose rapidly with a significant attenuation of urinary NH4 excretion. Alkali loading caused rapid upregulation of exosomal pendrin abundance at 1 h and normalized within 3 h of treatment. Equimolar NaCl loading (n = 6) did not alter urinary or venous blood pH or urinary NH4 excretion. However, pendrin abundance in urinary exosomes was significantly reduced at 2 h of NaCl ingestion with lowest levels observed at 4 h after treatment. In patients with inherited distal renal tubular acidosis (dRTA), pendrin abundance in urinary exosomes was greatly reduced and did not change upon oral NH4Cl loading. In summary, pendrin can be detected and quantified in human urinary exosomes by immunoblotting. Acid, alkali, and NaCl loadings cause acute changes in pendrin abundance in urinary exosomes within a few hours. Our data suggest that exosomal pendrin is a promising urinary biomarker for acute acid-base and volume status changes in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amlal H, Petrovic S, Xu J, Wang Z, Sun X, Barone S, Soleimani M (2010) Deletion of the anion exchanger Slc26a4 (pendrin) decreases apical Cl(−)/HCO3(−) exchanger activity and impairs bicarbonate secretion in kidney collecting duct. Am J Physiol Cell Physiol 299:C33–C41. doi:10.1152/ajpcell.00033.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berthelot M (1859) Violet d’aniline. Rep Chim App 1:688

    Google Scholar 

  3. Brown D, Hirsch S, Gluck S (1988) An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331:622–624. doi:10.1038/331622a0

    Article  CAS  PubMed  Google Scholar 

  4. Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders TL, Petralia RS, Wangemann P, Friedman TB, Griffith AJ (2011) Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest 121:4516–4525. doi:10.1172/JCI59353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhayat NA, Schaller A, Albano G, Poindexter J, Griffith C, Pasch A, Gallati S, Vogt B, Moe OW, Fuster DG (2016) The vacuolar H+-ATPase B1 subunit polymorphism p.E161K associates with impaired urinary acidification in recurrent stone formers. J Am Soc Nephrol 27:1544–1554

    Article  CAS  PubMed  Google Scholar 

  6. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422. doi:10.1038/ng1297-411

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA (2010) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int 77:736–742

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frische S, Kwon TH, Frokiaer J, Madsen KM, Nielsen S (2003) Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol 284:F584–F593. doi:10.1152/ajprenal.00254.2002

    Article  CAS  PubMed  Google Scholar 

  9. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20:363–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Corniere N, Leviel F, Sohet F, Wagner CA, Eladari D, Chambrey R (2013) Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 123:4219–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hafner P, Grimaldi R, Capuano P, Capasso G, Wagner CA (2008) Pendrin in the mouse kidney is primarily regulated by Cl- excretion but also by systemic metabolic acidosis. Am J Physiol Cell Physiol 295:C1658–C1667

    Article  CAS  PubMed  Google Scholar 

  12. Higashijima Y, Sonoda H, Takahashi S, Kondo H, Shigemura K, Ikeda M (2013) Excretion of urinary exosomal AQP2 in rats is regulated by vasopressin and urinary pH. Am J Physiol Renal Physiol 305:F1412–F1421. doi:10.1152/ajprenal.00249.2013

    Article  CAS  PubMed  Google Scholar 

  13. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    Article  CAS  PubMed  Google Scholar 

  14. Kim HY, Kim SS, Bae EH, Ma SK, Kim SW (2015) Decreased renal expression of H(+)-ATPase and pendrin in a patient with distal renal tubular acidosis associated with Sjogren’s syndrome. Intern Med 54:2899–2904. doi:10.2169/internalmedicine.54.4821

    Article  CAS  PubMed  Google Scholar 

  15. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hassan H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D (2010) The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120:1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Odorizzi G, Katzmann DJ, Babst M, Audhya A, Emr SD (2003) Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 116:1893–1903

    Article  CAS  PubMed  Google Scholar 

  17. Pathare G, Tutakhel OA, VDW MC, Shelton LM, Deinum J, Lenders JW, Hoenderop JG, Bindels RJ (2017) Hydrochlorothiazide treatment increases the abundance of the NaCl cotransporter in urinary extracellular vesicles of essential hypertensive patients. Am J Physiol Renal Physiol:ajprenal 00644:2016. doi:10.1152/ajprenal.00644.2016

    Google Scholar 

  18. Petrovic S, Wang Z, Ma L, Soleimani M (2003) Regulation of the apical Cl-/HCO-3 exchanger pendrin in rat cortical collecting duct in metabolic acidosis. Am J Physiol Renal Physiol 284:F103–F112. doi:10.1152/ajprenal.00205.2002

    Article  CAS  PubMed  Google Scholar 

  19. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Purkerson JM, Heintz EV, Nakamori A, Schwartz GJ (2014) Insights into acidosis-induced regulation of SLC26A4 (pendrin) and SLC4A9 (AE4) transporters using three-dimensional morphometric analysis of beta-intercalated cells. Am J Physiol Renal Physiol 307:F601–F611. doi:10.1152/ajprenal.00404.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Purkerson JM, Tsuruoka S, Suter DZ, Nakamori A, Schwartz GJ (2010) Adaptation to metabolic acidosis and its recovery are associated with changes in anion exchanger distribution and expression in the cortical collecting duct. Kidney Int 78:993–1005. doi:10.1038/ki.2010.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D (2004) The Cl-/HCO3-exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 287:F1179–F1188

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez Soriano J (2002) Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 13:2160–2170

    Article  PubMed  Google Scholar 

  24. Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845. doi:10.1210/endo.141.2.7303

    Article  CAS  PubMed  Google Scholar 

  25. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98:4221–4226. doi:10.1073/pnas.071516798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satlin LM, Matsumoto T, Schwartz GJ (1992) Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Phys 262:F199–F208

    Article  CAS  Google Scholar 

  27. Satlin LM, Schwartz GJ (1989) Cellular remodeling of HCO3(−)-secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol 109:1279–1288

    Article  CAS  PubMed  Google Scholar 

  28. Schuster VL, Fejes-Toth G, Naray-Fejes-Toth A, Gluck S (1991) Colocalization of H(+)-ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am J Phys 260:F506–F517

    CAS  Google Scholar 

  29. Schwartz GJ, Barasch J, Al-Awqati Q (1985) Plasticity of functional epithelial polarity. Nature 318:368–371

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz GJ, Satlin LM, Bergmann JE (1988) Fluorescent characterization of collecting duct cells: a second H+-secreting type. Am J Phys 255:F1003–F1014

    CAS  Google Scholar 

  31. Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q (2002) Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J Clin Invest 109:89–99. doi:10.1172/JCI13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scott DA, Karniski LP (2000) Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol 278:C207–C211

    Article  CAS  PubMed  Google Scholar 

  33. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443. doi:10.1038/7783

    Article  CAS  PubMed  Google Scholar 

  34. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26:71–75

    Article  CAS  PubMed  Google Scholar 

  35. Takata K, Matsuzaki T, Tajika Y, Ablimit A, Hasegawa T (2008) Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol 130:197–209. doi:10.1007/s00418-008-0457-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsuruoka S, Schwartz GJ (1996) Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro. J Clin Invest 97:1076–1084. doi:10.1172/JCI118500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vallet M, Picard N, Loffing-Cueni D, Fysekidis M, Bloch-Faure M, Deschenes G, Breton S, Meneton P, Loffing J, Aronson PS, Chambrey R, Eladari D (2006) Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 17:2153–2163

    Article  CAS  PubMed  Google Scholar 

  38. van den Wildenberg MJ, Hoorn EJ, Mohebbi N, Wagner CA, Woittiez AJ, de Vries PA, Laverman GD (2015) Distal renal tubular acidosis with multiorgan autoimmunity: a case report. Am J Kidney Dis 65:607–610. doi:10.1053/j.ajkd.2014.09.026

    Article  PubMed  Google Scholar 

  39. van der Lubbe N, Jansen PM, Salih M, Fenton RA, van den Meiracker AH, Danser AH, Zietse R, Hoorn EJ (2012) The phosphorylated sodium chloride cotransporter in urinary exosomes is superior to prostasin as a marker for aldosteronism. Hypertension 60:741–748. doi:10.1161/HYPERTENSIONAHA.112.198135

    Article  PubMed  Google Scholar 

  40. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM (2003) Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 42:356–362. doi:10.1161/01.HYP.0000088321.67254.B7

    Article  CAS  PubMed  Google Scholar 

  41. Verlander JW, Madsen KM, Stone DK, Tisher CC (1994) Ultrastructural localization of H+ATPase in rabbit cortical collecting duct. J Am Soc Nephrol 4:1546–1557

    CAS  PubMed  Google Scholar 

  42. Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP (2002) Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 62:2109–2117

    Article  CAS  PubMed  Google Scholar 

  43. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW (2004) NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension 44:982–987. doi:10.1161/01.HYP.0000145863.96091.89

    Article  CAS  PubMed  Google Scholar 

  44. Walsh SB, Shirley DG, Wrong OM, Unwin RJ (2007) Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int 71:1310–1316

    Article  CAS  PubMed  Google Scholar 

  45. Wrong O, Davies HE (1959) The excretion of acid in renal disease. Q J Med 28:259–313

    CAS  PubMed  Google Scholar 

  46. Yang Q, Li G, Singh SK, Alexander EA, Schwartz JH (2006) Vacuolar H+-ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells. J Am Soc Nephrol 17:1858–1866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Alain Doucet for technical assistance, helpful suggestions, and discussions. GP was supported by the Marie Curie Actions International Fellowship Program (IFP). DF was supported by the Swiss National Centre of Competence in Research NCCR TransCure, by the Swiss National Science Foundation (grant nos. 31003A_152829 and 33IC30_166785/1), and by a Medical Research Position Award of the Foundation Prof. Dr. Max Cloëtta. CAW is supported by the National Centre of Competence in Research NCCR Kidney.CH and the Swiss National Science Foundation grant (31003A_155959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Fuster.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 10167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathare, G., Dhayat, N., Mohebbi, N. et al. Acute regulated expression of pendrin in human urinary exosomes. Pflugers Arch - Eur J Physiol 470, 427–438 (2018). https://doi.org/10.1007/s00424-017-2049-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2049-0

Keywords

Navigation