Skip to main content

Advertisement

Log in

Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amiel C, Kuntziger H, Richet G (1970) Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat. Evidence for distal reabsorption. Pflugers Arch 317:93–109. https://doi.org/10.1007/bf00592495

    Article  CAS  PubMed  Google Scholar 

  2. Bacic D, Capuano P, Baum M, Zhang J, Stange G, Biber J, Kaissling B, Moe OW, Wagner CA, Murer H (2005) Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Am J Physiol Renal Physiol 288:F740–F747. https://doi.org/10.1152/ajprenal.00380.2004

    Article  CAS  PubMed  Google Scholar 

  3. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A 95:5372–5377. https://doi.org/10.1073/pnas.95.9.5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192. https://doi.org/10.1086/499409

    Article  CAS  PubMed  Google Scholar 

  5. Biber J, Stieger B, Stange G, Murer H (2007) Isolation of renal proximal tubular brush-border membranes. Nat Protoc 2:1356–1359. https://doi.org/10.1038/nprot.2007.156

    Article  CAS  PubMed  Google Scholar 

  6. Biber J, Hernando N, Forster I (2013) Phosphate transporters and their function. Annu Rev Physiol 75:535–550. https://doi.org/10.1146/annurev-physiol-030212-183748

    Article  CAS  PubMed  Google Scholar 

  7. Bon N, Couasnay G, Bourgine A, Sourice S, Beck-Cormier S, Guicheux J, Beck L (2018) Phosphate (pi)-regulated heterodimerization of the high-affinity sodium-dependent pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular pi sensing independently of pi uptake. J Biol Chem 293:2102–2114. https://doi.org/10.1074/jbc.M117.807339

    Article  CAS  PubMed  Google Scholar 

  8. Bon N, Frangi G, Sourice S, Guicheux J, Beck-Cormier S, Beck L (2018) Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2. Mol Metab 11:197–204. https://doi.org/10.1016/j.molmet.2018.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bourgeois S, Capuano P, Stange G, Muhlemann R, Murer H, Biber J, Wagner CA (2013) The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflug Arch Eur J Phy 465:1557–1572. https://doi.org/10.1007/s00424-013-1298-9

    Article  CAS  Google Scholar 

  10. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M (2009) Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 297:F350–F361. https://doi.org/10.1152/ajprenal.90765.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brunette MG, Taleb L, Carriere S (1973) Effect of parathyroid hormone on phosphate reabsorption along the nephron of the rat. Am J Phys 225:1076–1081. https://doi.org/10.1152/ajplegacy.1973.225.5.1076

    Article  CAS  Google Scholar 

  12. Candeal E, Caldas YA, Guillen N, Levi M, Sorribas V (2017) Intestinal phosphate absorption is mediated by multiple transport systems in rats. Am J Physiol-Gastr L 312:G355–G366. https://doi.org/10.1152/ajpgi.00244.2016

    Article  Google Scholar 

  13. Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St-Arnoud R, Murer H, Biber J (2005) Intestinal and renal adaptation to a low-pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Am J Physiol Cell Physiol 288:C429–C434. https://doi.org/10.1152/ajpcell.00331.2004

    Article  CAS  PubMed  Google Scholar 

  14. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, Moe OW, Liang G, Li X, Mohammadi M (2018) Alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553:461–466. https://doi.org/10.1038/nature25451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Corut A, Senyigit A, Ugur SA, Altin S, Ozcelik U, Calisir H, Yildirim Z, Gocmen A, Tolun A (2006) Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am J Hum Genet 79:650–656. https://doi.org/10.1086/508263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cunningham R, Biswas R, Brazie M, Steplock D, Shenolikar S, Weinman EJ (2009) Signaling pathways utilized by PTH and dopamine to inhibit phosphate transport in mouse renal proximal tubule cells. Am J Physiol Renal Physiol 296:F355–F361. https://doi.org/10.1152/ajprenal.90426.2008

    Article  CAS  PubMed  Google Scholar 

  17. Custer M, Lotscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-P-I Cotransport in rat-kidney - localization by Rt-Pcr and immunohistochemistry. Am J Phys 266:F767–F774

    CAS  Google Scholar 

  18. Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, Bacic D, O'Brien S, Biber J, Murer H (2005) Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol 289:C159–C167. https://doi.org/10.1152/ajpcell.00456.2004

    Article  CAS  PubMed  Google Scholar 

  19. Dinour D, Davidovits M, Ganon L, Ruminska J, Forster IC, Hernando N, Eyal E, Holtzman EJ, Wagner CA (2016) Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol 31:2289–2297. https://doi.org/10.1007/s00467-016-3443-0

    Article  PubMed  Google Scholar 

  20. Forster IC, Hernando N, Biber J, Murer H (2012) Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr 70:313–356. https://doi.org/10.1016/B978-0-12-394316-3.00010-7

    Article  CAS  PubMed  Google Scholar 

  21. Forster IC, Hernando N, Biber J, Murer H (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol Asp Med 34:386–395. https://doi.org/10.1016/j.mam.2012.07.007

    Article  CAS  Google Scholar 

  22. Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem S, Barry N, Blaine J, Jiang T, Wang XX, Levi M (2009) Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol 297:F1466–F1475. https://doi.org/10.1152/ajprenal.00279.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graham C, Nalbant P, Scholermann B, Hentschel H, Kinne RK, Werner A (2003) Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney. Am J Physiol Renal Physiol 284:F727–F736. https://doi.org/10.1152/ajprenal.00356.2002

    Article  CAS  PubMed  Google Scholar 

  24. Greger R, Lang F, Marchand G, Knox FG (1977) Site of renal phosphate reabsorption. Micropuncture and microinfusion study. Pflugers Arch 369:111–118. https://doi.org/10.1007/bf00591566

    Article  CAS  PubMed  Google Scholar 

  25. Hattenhauer O, Traebert M, Murer H, Biber J (1999) Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am J Phys 277:G756–G762. https://doi.org/10.1152/ajpgi.1999.277.4.G756

    Article  CAS  Google Scholar 

  26. Hernando N, Wagner CA (2018) Mechanisms and regulation of intestinal phosphate absorption. Compr Physiol 8:1065–1090. https://doi.org/10.1002/cphy.c170024

    Article  PubMed  Google Scholar 

  27. Hernando N, Myakala K, Simona F, Knopfel T, Thomas L, Murer H, Wagner CA, Biber J (2015) Intestinal depletion of NaPi-IIb/Slc34a2 in mice: renal and hormonal adaptation. J Bone Miner Res 30:1925–1937. https://doi.org/10.1002/jbmr.2523

    Article  CAS  PubMed  Google Scholar 

  28. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 95:14564–14569. https://doi.org/10.1073/pnas.95.24.14564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ (2006) Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab 91:4022–4027. https://doi.org/10.1210/jc.2005-2840

    Article  CAS  PubMed  Google Scholar 

  30. Inden M, Iriyama M, Zennami M, Sekine SI, Hara A, Yamada M, Hozumi I (2016) The type III transporters (PiT-1 and PiT-2) are the major sodium-dependent phosphate transporters in the mice and human brains. Brain Res 1637:128–136. https://doi.org/10.1016/j.brainres.2016.02.032

    Article  CAS  PubMed  Google Scholar 

  31. Jaeger P, Bonjour JP, Karlmark B, Stanton B, Kirk RG, Duplinsky T, Giebisch G (1983) Influence of acute potassium loading on renal phosphate transport in the rat kidney. Am J Phys 245:F601–F605

    CAS  Google Scholar 

  32. Jensen N, Schroder HD, Hejbol EK, Fuchtbauer EM, de Oliveira JR, Pedersen L (2013) Loss of function of Slc20a2 associated with familial idiopathic basal ganglia calcification in humans causes brain calcifications in mice. J Mol Neurosci 51:994–999. https://doi.org/10.1007/s12031-013-0085-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Juan D, Liptak P, Gray TK (1976) Absorption of inorganic phosphate in the human jejunum and its inhibition by salmon calcitonin. J Clin Endocrinol Metab 43:517–522. https://doi.org/10.1210/jcem-43-3-517

    Article  CAS  PubMed  Google Scholar 

  34. Katai K, Segawa H, Haga H, Morita K, Arai H, Tatsumi S, Taketani Y, Miyamoto K, Hisano S, Fukui Y, Takeda E (1997) Acute regulation by dietary phosphate of the sodium-dependent phosphate transporter (NaP(i)-2) in rat kidney. J Biochem 121:50–55. https://doi.org/10.1093/oxfordjournals.jbchem.a021569

    Article  CAS  PubMed  Google Scholar 

  35. Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999) Regulation of intestinal Na+−dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 343(Pt 3):705–712

    Article  CAS  Google Scholar 

  36. Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H, Biber J (1998) Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int 54:1224–1232. https://doi.org/10.1046/j.1523-1755.1998.00115.x

    Article  CAS  PubMed  Google Scholar 

  37. Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901. https://doi.org/10.1038/ki.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123. https://doi.org/10.1074/jbc.C500457200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lassiter WE, Colindres RE (1982) Phosphate reabsorption in the distal convoluted tubule. Adv Exp Med Biol 151:21–32. https://doi.org/10.1007/978-1-4684-4259-5_3

    Article  CAS  PubMed  Google Scholar 

  40. Lederer E, Wagner CA (2019) Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflug Arch Eur J Phy 471:137–148. https://doi.org/10.1007/s00424-018-2246-5

    Article  CAS  Google Scholar 

  41. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193–201. https://doi.org/10.1086/499410

    Article  CAS  PubMed  Google Scholar 

  42. Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1997) Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content. J Clin Invest 99:1302–1312. https://doi.org/10.1172/JCI119289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madjdpour C, Bacic D, Kaissling B, Murer H, Biber J (2004) Segment-specific expression of sodium-phosphate cotransporters NaPi-IIa and -IIc and interacting proteins in mouse renal proximal tubules. Pflugers Arch 448:402–410. https://doi.org/10.1007/s00424-004-1253-x

    Article  CAS  PubMed  Google Scholar 

  44. Marks J, Srai SK, Biber J, Murer H, Unwin RJ, Debnam ES (2006) Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice. Exp Physiol 91:531–537. https://doi.org/10.1113/expphysiol.2005.032516

    Article  CAS  PubMed  Google Scholar 

  45. Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ (2015) Experimental and regional variations in Na+−dependent and Na+−independent phosphate transport along the rat small intestine and colon. Physiol Rep 3. https://doi.org/10.14814/phy2.12281

  46. Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, Anders HJ (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1 beta secretion. J Clin Invest 123:236–246. https://doi.org/10.1172/Jci63679

    Article  CAS  PubMed  Google Scholar 

  47. Mulay SR, Eberhard JN, Pfann V, Marschner JA, Darisipudi MN, Daniel C, Romoli S, Desai J, Grigorescu M, Kumar SV, Rathkolb B, Wolf E, de Angelis MH, Bauerle T, Dietel B, Wagner CA, Amann K, Eckardt KU, Aronson PS, Anders HJ, Knauf F (2016) Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am J Physiol-Renal 310:F785–F795. https://doi.org/10.1152/ajprenal.00488.2015

    Article  CAS  Google Scholar 

  48. Myakala K, Motta S, Murer H, Wagner CA, Koesters R, Biber J, Hernando N (2014) Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Renal Physiol 306:F833–F843. https://doi.org/10.1152/ajprenal.00133.2013

    Article  CAS  PubMed  Google Scholar 

  49. Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 23:22–44

    Article  CAS  Google Scholar 

  50. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA (2008) Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflug Arch Eur J Phy 457:539–549. https://doi.org/10.1007/s00424-008-0530-5

    Article  CAS  Google Scholar 

  51. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Susztak K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763. https://doi.org/10.1126/science.aar2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/P-i cotransporter. P Natl Acad Sci USA 95:1909–1914. https://doi.org/10.1073/pnas.95.4.1909

    Article  CAS  Google Scholar 

  53. Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, Biber J, Wagner CA (2010) Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflug Arch Eur J Phy 460:677–687. https://doi.org/10.1007/s00424-010-0841-1

    Article  CAS  Google Scholar 

  54. Radanovic T, Wagner CA, Murer H, Biber J (2005) Regulation of intestinal phosphate transport - I. segmental expression and adaptation to low-P-i diet of the type IIb Na+-P-i cotransporter in mouse small intestine. Am J Physiol-Gastr L 288:G496–G500. https://doi.org/10.1152/ajpgi.00167.2004

    Article  CAS  Google Scholar 

  55. Rajagopal A, Braslavsky D, Lu JT, Kleppe S, Clement F, Cassinelli H, Liu DS, Liern JM, Vallejo G, Bergada I, Gibbs RA, Campeau PM, Lee BH (2014) Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J Clin Endocrinol Metab 99:E2451–E2456. https://doi.org/10.1210/jc.2014-1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ransick A, Lindstrom NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, Kim AD, Black HG, Kim J, McMahon AP (2019) Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell 51(399–413):e397. https://doi.org/10.1016/j.devcel.2019.10.005

    Article  CAS  Google Scholar 

  57. Ritthaler T, Traebert M, Lotscher M, Biber J, Murer H, Kaissling B (1999) Effects of phosphate intake on distribution of type II Na/Pi cotransporter mRNA in rat kidney. Kidney Int 55:976–983. https://doi.org/10.1046/j.1523-1755.1999.055003976.x

    Article  CAS  PubMed  Google Scholar 

  58. Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20:2348–2358. https://doi.org/10.1681/ASN.2009050559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saito A, Nikolaidis NM, Amlal H, Uehara Y, Gardner JC, LaSance K, Pitstick LB, Bridges JP, Wikenheiser-Brokamp KA, McGraw DW, Woods JC, Sabbagh Y, Schiavi SC, Altinisik G, Jakopovic M, Inoue Y, McCormack FX (2015) Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment. Sci Transl Med 7:313ra181. https://doi.org/10.1126/scitranslmed.aac8577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EA, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M (2016) Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile Hypercalcemia. J Am Soc Nephrol 27:604–614. https://doi.org/10.1681/ASN.2014101025

    Article  CAS  PubMed  Google Scholar 

  61. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/pi cotransporter. J Biol Chem 277:19665–19672. https://doi.org/10.1074/jbc.M200943200

    Article  CAS  PubMed  Google Scholar 

  62. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, Saito H, Fukushima N, Miyamoto K (2003) Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/pi transporter. Pflugers Arch 446:585–592. https://doi.org/10.1007/s00424-003-1084-1

    Article  CAS  PubMed  Google Scholar 

  63. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47. https://doi.org/10.1152/ajprenal.00375.2003

    Article  CAS  PubMed  Google Scholar 

  64. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, Taketani Y, Miyamoto K (2007) Parathyroid hormone-dependent endocytosis of renal type IIc Na-pi cotransporter. Am J Physiol Renal Physiol 292:F395–F403. https://doi.org/10.1152/ajprenal.00100.2006

    Article  CAS  PubMed  Google Scholar 

  65. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113. https://doi.org/10.1681/ASN.2008020177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435. https://doi.org/10.1359/JBMR.0301264

    Article  CAS  PubMed  Google Scholar 

  67. Staum BB, Hamburger RJ, Goldberg M (1972) Tracer microinjection study of renal tubular phosphate reabsorption in the rat. J Clin Invest 51:2271–2276. https://doi.org/10.1172/JCI107036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Suyama T, Okada S, Ishijima T, Iida K, Abe K, Nakai Y (2012) High phosphorus diet-induced changes in NaPi-IIb phosphate transporter expression in the rat kidney: DNA microarray analysis. PLoS One 7:e29483. https://doi.org/10.1371/journal.pone.0029483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tachibana T, Hagiwara K, Johkoh T (2009) Pulmonary alveolar microlithiasis: review and management. Curr Opin Pulm Med 15:486–490. https://doi.org/10.1097/MCP.0b013e32832d03bb

    Article  PubMed  Google Scholar 

  70. Tomoe Y, Segawa H, Shiozawa K, Kaneko I, Tominaga R, Hanabusa E, Aranami F, Furutani J, Kuwahara S, Tatsumi S, Matsumoto M, Ito M, Miyamoto K (2010) Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Am J Physiol Renal Physiol 298:F1341–F1350. https://doi.org/10.1152/ajprenal.00375.2009

    Article  CAS  PubMed  Google Scholar 

  71. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary pi. Am J Physiol Renal Physiol 296:F691–F699. https://doi.org/10.1152/ajprenal.90623.2008

    Article  CAS  PubMed  Google Scholar 

  72. Wagner CA, Hernando N, Forster IC, Biber J (2014) The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch 466:139–153. https://doi.org/10.1007/s00424-013-1418-6

    Article  CAS  PubMed  Google Scholar 

  73. Wagner CA, Rubio-Aliaga I, Hernando N (2019) Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 34:549–559. https://doi.org/10.1007/s00467-017-3873-3

    Article  PubMed  Google Scholar 

  74. Walton J, Gray TK (1979) Absorption of inorganic-phosphate in the human small-intestine. Clin Sci 56:407–412. https://doi.org/10.1042/cs0560407

    Article  CAS  PubMed  Google Scholar 

  75. Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintans B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44:254–256. https://doi.org/10.1038/ng.1077

    Article  CAS  PubMed  Google Scholar 

  76. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol 282:C487–C493. https://doi.org/10.1152/ajpcell.00412.2001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from the Swiss National Science Foundation to C.A.W (31003A-176125) and the National Center of Competence in Research NCCR Kidney.CH, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten A. Wagner.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Commentary to this article is available online at https://doi.org/10.1007/s00424-020-02374-5

Electronic supplementary material

ESM 1

Supplementary table 1 Sequence or source and efficiency of qPCR primers (Fw= forward; Rv= reverse) and probes used to quantify the expression of Slc20 and Slc34 cotransporters in samples from mice, rats and human. Supplementary Figure 1. Validation of the anti NaPi-IIb antibody A-D) Immunofluorescence of mouse ileum with an anti-NaPi-IIb antibody (green) as well as with DAPI (blue) and phalloidin (red). A, B) signal in the absence of the antigenic peptide. C, D) signal in the presence of the antigenic peptide. E-F) Westernblots on kidney homogenates (K) and intestinal BBM (I) of mice using anti-NaPi-IIb (top panels) and actin (bottom panels) antibodies. Signals E) without or F) with antigenic peptide. The arrowhead indicates the position of the transporter in BBM isolated from ileum. Figure 2. Intestinal mRNA expression of Na/Pi cotransporters: real-time PCR. Relative mRNA expression of NaPi-IIa, NaPi-IIb, NaPi-IIc, Pit-1 and Pit-2 in A) ileum of WT mice (n=5) as well as B) duodenum and C) jejunum from rats (n=5). Expression of Pit-1 in rat duodenum was not tested. Ct values of each mRNA were normalized to the Ct values of the control mRNA HPRT. Supplementary Figure 3. Effect of oxalate treatment on wild type mice A) Plasma creatinine, and B) plasma urea. n=6. ** p<0.01, *** p< 0.001. Student t-test.Supplementary Figure 4. Data from single cell transcriptome analysis from mouse kidneys A) Expression of NaPi-IIa, NaPi-IIb and NaPi-IIc mRNAs in juxtamedullary nephrons and ureteric epithelium. Scheme taken from Ransick et al; Developmental Cell, 2019. Average expressions are given in logarithmic scale. Subdivisions indicate: 1) podocytes (visceral epithelium), 2) parietal epithelium, 3) segment 1 of proximal tubule – female, 4) segment 1 of proximal tubule – male, 5) segment 2 of proximal tubule –female, 6) segment 2 of proximal tubule – male, 7) segment 3 of proximal tubule – female, 8) segment 3 of proximal tubule – male, 9A) LOH thin descending limb of inner stripe of outer medulla of cortical nephron, 9B) LOH thin descending limb of inner stripe of outer medulla of juxtamedullary nephron, 10) upper LOH thin descending limb of inner medulla of juxtamedullary nephron, 11) lower LOH thin descending limb of inner medulla of juxtamedullary nephron, 12) lower LOH thin limb of inner medulla of juxtamedullary nephron, 13) lower LOH thin limb of inner medulla of juxtamedullary nephron, 14) upper LOH thin ascending limb of inner medulla of juxtamedullary nephron, 15) distal straight tubule of inner stripe of outer medulla (syn: thick ascending limb of LOH), 16) distal straight tubule of outer stripe of outer medulla and cortex (syn: thick ascending limb of LOH), 17) macula densa, 18) distal convoluted tubule, 19) nephron connecting tubule, 20) principal-like cell of nephron connecting tubule, 21) intercalated type non-A non-B cell of nephron connecting tubule, 22) intercalated type A cell of nephron connecting tubule and cortical collecting duct, 23) principal-like cell of cortical collecting duct, 24) intercalated type B cell of cortical collecting duct, 25) intercalated type A cell of outer medullary collecting duct, 26) principal cell of outer medullary collecting duct, 27) intercalated type A cell of inner medullary collecting duct, 28) principal cell of inner medullary collecting duct type 1, 29) principal cell of inner medullary collecting duct type 2, 30) principal-like cell of deep inner medullary collecting duct type 1, 31) cell of deep inner medullary collecting duct type 2 and 32) deep medullary epithelium of pelvis. B) Expression of NaPi-IIa, NaPi-IIb, NaPi-IIc, Pit-1 and Pit-2 mRNAs in kidneys from mice. Data extracted from Park et al. Science 2018. (PPTX 1635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, S.E., Imenez Silva, P.H., Daryadel, A. et al. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch - Eur J Physiol 472, 449–460 (2020). https://doi.org/10.1007/s00424-020-02370-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02370-9

Keywords

Navigation