Skip to main content
Log in

Identification of a Golgi-localised GRIP domain protein from Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A family of Golgi-localised molecules was recently described in animals and fungi possessing extensive coiled regions and a short (~40 residues) conserved C-terminal domain, called the GRIP domain, which is responsible for their location to this organelle. Using the model plant Arabidopsis thaliana, we identified a gene (AtGRIP) encoding a putative GRIP protein. We demonstrated that the C-terminal domain from AtGRIP functions as a Golgi-targeting sequence in plant cells. Localisation studies in living cells expressing the AtGRIP fused to a DsRed2 fluorescent probe, showed extensive co-location with the Golgi marker α-mannosidase I in transformed tobacco protoplasts. GRIP-like sequences were also found in genomic databases of rice, maize, wheat and alfalfa, suggesting that this domain may be a useful Golgi marker for immunolocalisation studies. Despite low sequence identity amongst GRIP domains, the plant GRIP sequence was able to target to the Golgi of mammalian cells. Taken together, these data indicate that GRIP domain proteins might be implicated in a targeting mechanism that is conserved amongst eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–c
Fig. 3

Similar content being viewed by others

Abbreviations

α-ManI:

α-Mannosidase I

AtGRIP:

Arabidopsis GRIP domain protein

GCC:

Golgi-localized coiled-coil protein

GFP:

Green fluorescent protein

MES:

2-(N-Morpholino)ethanesulfonic acid

TGN:

Trans-Golgi network

References

  • Barr F (1999) A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr Biol 9:381–384

    CAS  PubMed  Google Scholar 

  • Brown D, Heimann K, Lock J, Kjer-Nielsen L, Vliet K van, Stow J, Gleeson P (2001) The GRIP domain is a specific targeting sequence for a population of trans-Golgi network derived tubulo-vesicular carriers. Traffic 2:336–344

    Article  CAS  PubMed  Google Scholar 

  • Clague M (1999) Membrane transport: take your fusion partners. Curr Biol 9:R258–R260

    Article  CAS  PubMed  Google Scholar 

  • Davis S, Vierstra R (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–528

    Article  CAS  PubMed  Google Scholar 

  • Erlich R, Gleeson P, Campbell P, Dietzsch E, Toh B (1996) Molecular characterization of trans-Golgi p230. A human peripheral membrane protein encoded by a gene on chromosome 6p12-22 contains extensive coiled-coil alpha-helical domains and a granin motif. J Biol Chem 271:8328–8337

    Article  CAS  PubMed  Google Scholar 

  • Essl D, Dirnberger D, Gomord V, Strasser R, Faye L, Glossl J, Steinkellner H (1999) The N-terminal 77 amino acids from tobacco N-acetylglucosaminyltransferase I are sufficient to retain a reporter protein in the Golgi apparatus of Nicotiana benthamiana cells. FEBS Lett 453:169–173

    Article  CAS  PubMed  Google Scholar 

  • Fitchette A, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121:333–344

    CAS  PubMed  Google Scholar 

  • Fritzler M, Lung C, Hamel J, Griffith K, Chan E (1995) Molecular characterization of Golgin-245, a novel Golgi complex protein containing a granin signature. J Biol Chem 270:31262–31268

    Article  CAS  PubMed  Google Scholar 

  • Gangi Setty SR, Shin ME, Yoshino A, Marks MS, Burd CG (2003) Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol 13:401–404

    Article  PubMed  Google Scholar 

  • Gish W, States D (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272

    CAS  PubMed  Google Scholar 

  • Gleeson P, Anderson T, Stow J, Griffiths G, Toh B, Matheson F (1996) p230 is associated with vesicles budding from the trans-Golgi network. J Cell Sci 109:2811–2821

    CAS  PubMed  Google Scholar 

  • Goodin M, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) PGD vectors: versitile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Eu Y-J, Yoo CM, Kim Y-W, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13:287–301

    Article  CAS  PubMed  Google Scholar 

  • Kjer-Nielsen L, Teasdale R, Vliet C van, Gleeson P (1999) A novel Golgi-localisation domain shared by a class of coiled coil peripheral membrane proteins. Curr Biol 9:385–388

    CAS  PubMed  Google Scholar 

  • Kooy J, Toh B, Pettitt J, Erlich R, Gleeson P (1992) Human autoantibodies as reagents to conserved Golgi components. Characterization of a peripheral, 230-kDa compartment-specific Golgi protein. J Biol Chem 267:20255–20263

    CAS  PubMed  Google Scholar 

  • Lu L, Hong W (2003) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14:3767–3781

    Article  CAS  PubMed  Google Scholar 

  • Luke M, Kjer-Nielsen L, Brown D, Stow J, Gleeson P (2003) GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi Network. J Biol Chem 278:4216–4226

    Article  CAS  PubMed  Google Scholar 

  • Lupas A (1996) Colied coils: new structures and new functions. Trends Biochem Sci 21:375–382

    CAS  PubMed  Google Scholar 

  • Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Koncz C, Koncz-Kalman Z (1998) Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J 13:707–716

    Article  CAS  PubMed  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    CAS  PubMed  Google Scholar 

  • McConville M, Ilgoutz S, Teasdale R, Foth B, Matthews A, Mullin K, Gleeson P (2002) Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals. Eur J Cell Biol 81:485–495

    CAS  PubMed  Google Scholar 

  • Munro S, Nichols B (1999) The GRIP domain—novel Golgi-targeting domain found in several coiled coil proteins. Curr Biol 9:377–380

    CAS  PubMed  Google Scholar 

  • Nebenführ A, Staehelin L (2001) Mobile factories: Golgi dynamics in plant cells. Trends Plant Sci 6:160–167

    PubMed  Google Scholar 

  • Nebenführ A, Gallagher LA, Dunahahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin A (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141

    PubMed  Google Scholar 

  • Nebenführ A, Frohlick J, Staehelin L (2000) Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol 124:135–151

    PubMed  Google Scholar 

  • Panic B, Whyte J, Munro S (2003) The ARF-like GTPases Arl1p and Arll3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol 13:405–410

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (2002) A transient expression assay using Arabidopsis mesophyll protoplasts. http://genetics.mgh.harvard.edu/sheenweb/

  • Tsukuda M, Will E, Gallwitz D (1999) Structural and functional analysis of a novel coiled coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Cell Biol 10:63–75

    Google Scholar 

  • Waters M, Hughson F (2000) Membrane tethering in intracellular transport. Traffic 1:588–597

    Article  CAS  PubMed  Google Scholar 

  • Waters M, Pfeffer S (1999) Membrane tethering and fusion in the secretory and endocytic pathways. Curr Opin Cell Biol 11:453–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Paul R. Gilson and Claudia E. Vergara contributed equally to this work. We acknowledge the financial support of the Australian Research Council. We thank A.-C. Fitchette, Université de Rouen, for providing us with the anti-Lewis antigen antibody and thank Ross Waller and Tim Spurck, University of Melbourne, for assistance with confocal microscopy. We also thank Andrew Staehelin, University of Colorado, Boulder, for providing us with the α-Mannosidase I-GFP clone, Inhwan Hwang, Pohang University of Science and Technology, for the H+ATPase-GFP clone and Michael Goodin, University of California, Berkeley, for providing us with the pGD vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Bacic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilson, P.R., Vergara, C.E., Kjer-Nielsen, L. et al. Identification of a Golgi-localised GRIP domain protein from Arabidopsis thaliana. Planta 219, 1050–1056 (2004). https://doi.org/10.1007/s00425-004-1311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1311-9

Keywords

Navigation