Skip to main content
Log in

Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AICAR:

5-Aminoimidazole-4-carboxyamide ribonucleoside

IMP:

Inosine-5′-phosphate

PRPP:

5-Phosphoribosyl-1-pyrophosphate

ZMP:

5-Aminoimidazole-4-carboxyamide ribonucleotide

References

  • Anderson JD (1979) Purine nucleotide metabolism of germinating soybean embryonic axes. Plant Physiol 63:100–104

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H (1983) Changes in activities of purine salvage and ureide synthesis during germination of black gram (Phaseolus mungo) seeds. Z Pflanzenphysiol 113:47–60

    CAS  Google Scholar 

  • Ashihara H, Crozier A (1999) Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res 30:118–205

    Google Scholar 

  • Ashihara H, Nobusawa E (1981) Metabolic fate of [8-14C]adenine and [8-14C]hypoxanthine in higher plants. Z Pflanzenphysiol 104:443–458

    CAS  Google Scholar 

  • Ashihara H, Ukaji T (1985) Presence of adenine phosphoribosyltransferase and adenosine kinase in chloroplasts of spinach leaves. Int J Biochem 17:1275–1277

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Takasawa Y, Suzuki T (1997) Metabolic fate of guanosine in higher plants. Physiol Plant 100:909–916

    Article  CAS  Google Scholar 

  • Ashihara H, Stasolla C, Loukanina N, Thorpe TA (2000) Purine and pyrimidine metabolism in cultured white spruce (Picea glauca) cells:Metabolic fate of 14C-labeled precursors and activity of key enzymes. Physiol Plant 108:25–33

    CAS  Google Scholar 

  • Ashihara H, Stasolla C, Loukanina N, Thorpe TA (2001) Purine metabolism during white spruce somatic embryo development: salvage of adenine, adenosine, and inosine. Plant Sci 160:647–657

    Article  PubMed  CAS  Google Scholar 

  • Barsotti C, Pesi R, Giannecchini M, Ipata PL (2005) Evidence for the involvement of cytosolic 5′-nucleotidase (cN-II) in the synthesis of guanine nucleotides from xanthosine. J Biol Chem 280:13465–13469

    Article  PubMed  CAS  Google Scholar 

  • Boldt R, Zrenner R (2003) Purine and pyrimidine biosynthesis in higher plants. Physiol Plant 117:297–304

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burrell MM (1994) Control of carbohydrate metabolism in potato tubers. In: Belknap WR, Vayda ME, Park WD (eds) The molecular and cellular biology of the potato. CAB International, Wallingford, pp 45–55

    Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132

    PubMed  CAS  Google Scholar 

  • Combes A, Lafleuriel J, Le Floc’h F (1989) The inosine-guanosine kinase activity of mitochondria in tubers of Jerusalem artichoke. Plant Physiol Biochem 27:729–736

    CAS  Google Scholar 

  • van der Graaff E, Hooykaas P, Lein W, Lerchl J, Kunze G, Sonnewald U, Boldt R (2004) Molecular analysis of “de novo” purine biosynthesis in solanaceous species and in Arabidopsis thaliana. Front Biosci 9:1803–1816

    PubMed  Google Scholar 

  • Guranowski A (1979) Nucleoside phosphotransferase from yellow lupin seedling cotyledons. Biochim Biophys Acta 569:13–22

    PubMed  CAS  Google Scholar 

  • Hirose F, Ashihara H (1983) Comparison of purine metabolism in suspension cultured cells of different growth phases and stem tissue of Catharanthus roseus. Z Naturforsch 38c:375–381

    CAS  Google Scholar 

  • Hirose N, Makita N, Yamaya T, Sakakibara H (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol 138:196–206

    Article  PubMed  CAS  Google Scholar 

  • Katahira R, Ashihara H (2002) Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 215:821–828

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Shimaoka M, Usuda Y, Utagawa T. (2000) End-product regulation and kinetic mechanism of guanosine-inosine kinase from Escherichia coli. Biosci Biotech Biochem 64:972–979

    Article  CAS  Google Scholar 

  • Keough DT, Ng AL, Winzor DJ, Emmerson BT, de Jersey J (1999) Purification and characterization of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase and comparison with the human enzyme. Mol Biochem Parasitol 98:29–41

    Article  PubMed  CAS  Google Scholar 

  • Le Floc’h F, Lafleuriel J (1981) The purine nucleosidases of Jerusalem artichoke shoots. Phytochemistry 20:2127–2129

    Article  CAS  Google Scholar 

  • Li G, Liu K, Baldwin SA, Wang D (2003) Equilibrative nucleoside transporters of Arabidopsis thaliana. cDNA cloning, expression pattern, and analysis of transport activities. J Biol Chem 278:35732–35742

    Article  PubMed  CAS  Google Scholar 

  • Liu SW, Milman G (1983) Purification and characterization of Escherichia coli guanine-xanthine phosphoribosyltransferase produced by a high efficiency expression plasmid utilizing a lambda PL promoter and CI857 temperature-sensitive repressor. J Biol Chem 258:7469–7475

    PubMed  CAS  Google Scholar 

  • Martin DW Jr, Owen NT (1972) Repression and derepression of purine biosynthesis in mammalian hepatoma cells in culture. J Biol Chem 247:5477–5485

    PubMed  CAS  Google Scholar 

  • Marutzky R, Peterssen-Borstel H, Flosdorf J (1974) Large scale enzymatic synthesis of nucleoside-5′-monophosphates using a phosphotransferase from carrots. Biotechnol Bioeng 16:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. In: Somerville CR, Meyerwitz EM (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, Online publication. DOI 10.1199/tab.0018 http://www.aspb.org/publications/arabidopsis/

  • Nobusawa E, Ashihara H (1983) Purine metabolism in cotyledons and embryonic axes of black gram (Phaseolus mungo L.) seedlings. Int J Biochem 15:1059–1065

    Article  CAS  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  PubMed  CAS  Google Scholar 

  • Prasher DC, Carr MC, Ives DH, Tsai TC, Frey PA (1982) Nucleoside phosphotransferase from barley. Characterization and evidence for ping pong kinetics involving phosphoryl enzyme. J Biol Chem 257:4931–4939

    PubMed  CAS  Google Scholar 

  • Ross CW (1981) Biosynthesis of nucleotides. In: Stump PK, Conn EE (eds) Biochemistry of plants, vol 6. Academic, New York, pp 169–205

  • Shuster L (1963) Aminoimidazolecarboxamide and formate incorporation into wheat embryo purines. J Biol Chem 238:3344–3347

    PubMed  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M, Takeda Y (2000) Nucleic acids. In: Buchanan BB, Gruissen W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 260–310

    Google Scholar 

  • Suzuki T, Takahashi E (1977) Biosynthesis of purine nucleotides and methylated purines in higher plants. Drug Metab Rev 6:213–242

    PubMed  CAS  Google Scholar 

  • Ukaji T, Ashihara H (1986) Purine salvage in mitochondria of cultured Catharanthus roseus cells. J Plant Physiol 125:191–197

    CAS  Google Scholar 

  • Winkler RG, Blevins DG, Randall DD (1988) Ureide catabolism in soybeans : III. Ureidoglycolate amidohydrolase and allantoate amidohydrolase are activities of an allantoate degrading enzyme complex. Plant Physiol 86:1084–1088

    PubMed  CAS  Google Scholar 

  • Yabuki N, Ashihara H (1992) AMP deaminase and the control of adenylate catabolism in suspension-cultured Catharanthus roseus cells. Phytochemistry 31:1905–1909

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ashihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katahira, R., Ashihara, H. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 225, 115–126 (2006). https://doi.org/10.1007/s00425-006-0334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0334-9

Keywords

Navigation