Skip to main content
Log in

Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Gene transformation is an integral tool for plant genetic engineering. All antibiotic resistant genes currently employed are of bacterial origin and their presence in the field is undesirable. Therefore, we developed a novel and efficient plant native non-antibiotic selection system for the selection of transgenic plants in the model system Arabidopsis. This new system is based on the enhanced expression of Arabidopsis tryptophan synthase beta 1 (AtTSB1) and the use of 5-methyl-tryptophan (5MT, a tryptophan [Trp] analog) and/or CdCl2 as selection agent(s). We successfully integrated an expression cassette containing an AtTSB1 cDNA driven by a cauliflower mosaic virus 35S promoter into Arabidopsis by floral dip transformation. Transgenic plants were efficiently selected on MS medium supplemented with 75 μM 5MT or 300 μM CdCl2 devoid of antibiotics. TSB1 selection was as efficient as the conventional hygromycin selection system. Northern blot analysis of transgenic plants selected by 5MT and CdCl2 revealed increased TSB1 mRNA transcript whereas uneven transcript levels of hygromycin phosphotransferase II (hpt) (control) was observed. Gas chromatography-mass spectrometry revealed 10–15 fold greater free Trp content in AtTSB1 transgenic plants than in wild-type plants grown with or without 5MT or CdCl2. Taken together, the TSB1 system provides a novel selection system distinct from conventional antibiotic selection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TSB1:

Tryptophan synthase beta 1 gene

5MT:

5′ Methyl-tryptophan

Trp:

Tryptophan

CdCl2 :

Cadmium chloride

TS-α:

Tryptophan synthase-α

TS-β:

Tryptophan synthase-β

References

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  PubMed  CAS  Google Scholar 

  • Breitler JC, Meynard D, Van Boxtel J, Royer M, Bonnot F, Cambillau L, Guiderdoni E (2004) A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287

    Article  PubMed  CAS  Google Scholar 

  • Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Brotherton JE, Song HS, Widholm JM (2000) Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol 123:1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Brotherton JE, Widholm JM (2004) Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation. Plant Cell Rep 23:104–113

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001a) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    Article  CAS  Google Scholar 

  • Daniell H, Wiebe PO, Millan AF (2001b) Antibiotic-free chloroplast genetic engineering—an environmentally friendly approach. Trends Plant Sci 6:237–239

    Article  CAS  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Ebmeier A, Allison L, Cerutti H, Clemente T (2004) Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation. Planta 218:751–758

    Article  PubMed  CAS  Google Scholar 

  • Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G (1995) A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 108:1043–1047

    PubMed  CAS  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458

    Article  PubMed  CAS  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2005) The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Mol Biol 57:425–433

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Petersen S, Okkels F (1998a) Plant xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows efective selection of transgenic plant cells using d-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  CAS  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998b) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep 18:76–81

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Article  PubMed  CAS  Google Scholar 

  • Joersbo M (2001) Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol Plant 111:269–272

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2004) In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. Plant Mol Biol 54:11–22

    Article  PubMed  CAS  Google Scholar 

  • Kisaka H, Kisaka M, Lee HY, Kmeya T (1998) Isolation of a cDNA for tryptophan synthase β from rice and studies of its expression in a 5-methyltryptophan-resistant mutant of rice. Plant Mol Biol 38:875–878

    Article  PubMed  CAS  Google Scholar 

  • Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR (1991) Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell 3:345–358

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Avonce N, Ramon M, Dijck PV, Iturriaga G, Thevelein JM (2005) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121(3):309–317

    Article  PubMed  Google Scholar 

  • Leyman B, Avonce N, Ramon M, Van Dijck P, Thevelein JM, Iturriaga G (2004) New selection marker for plant transformation. Methods Mol Biol 267:385–396

    PubMed  CAS  Google Scholar 

  • Liao LJ, Pan IC, Chan YL, Hsu YH, Chen WH, Chan MT (2004) Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance. Mol Breed 13:229–242

    Article  CAS  Google Scholar 

  • Mentewab A, Stewart CN Jr (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with toacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Last RL (1993) Expression patterns of duplicate tryptophan synthase beta genes in Arabidopsis thaliana. Plant Physiol 102:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Taulavuori K, Prasad MN, Taulavuori E, Laine K (2005) Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis. Environ Pollut 135:209–220

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Jordan M, Miki B (2006) Markers and selector genes for plant transformation. In: Jaime A Teixeira da Silva (eds) Ornamental and plant biotechnology, vol II. Global Science Books, London, pp 9–20

  • Tian L (2006) Markers gene removal from transgenic plants. In: Jaime A Teixeira da Silva (eds) Ornamental and plant biotechnology, vol II. Global Science Books, London, pp 26–29

  • Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase alpha-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol 126:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Tsai FY, Brotherton JE, Widholm JM (2005) Overexpression of the feedback-insensitive anthranilate synthase gene in tobacco causes tryptophan accumulation. Plant Cell Rep 23:548–556

    Article  PubMed  CAS  Google Scholar 

  • Wenck A, Hansen G (2005) Positive selection. Methods Mol Biol 286:227–236

    PubMed  CAS  Google Scholar 

  • You SJ, Liau CH, Hauang HE, Feng TY, Prasad V, Hsiao HH, Lu JC, Chan MT (2003) Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217:60–65

    PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to The Institute of Molecular Biology, Academia Sinica, for providing experimental equipment and facility. This work was supported by a grant from Academia Sinica and grant 94.AS-5.2.1-ST-a1 from the National Science and Technology Program for Agriculture Biotechnology of the Republic of China. Paoyuan Hsiao and Sanjaya contributed equally to this work. We also thank anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Tsair Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, P., Sanjaya, Su, RC. et al. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta 225, 897–906 (2007). https://doi.org/10.1007/s00425-006-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0405-y

Keywords

Navigation