Skip to main content

Advertisement

Log in

Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A synthetic phenylglycoside (β-GlcY) that interacts specifically with arabinogalactan-proteins (AGPs), a class of plant cell surface proteoglycans, has been used to study the spatial distribution of AGPs in the xylem tissue of radiata pine. These studies demonstrated that AGPs were located in the compound middle lamella (CML) of the newly developed tracheid. Abundant, low salt extractable AGPs were purified from xylem tissue. Monosaccharide analysis showed that arabinose and galactose were the main sugars present. Linkage analysis showed that most of the arabinose was in the furanose form, at the terminal and 5-linked positions, and the majority of the galactose was in the pyranose form at the terminal 3-, 6- and 3,6-linked positions; a linkage composition typical of AGPs. The AGPs had an abundance of characteristic amino acid residues including alanine, hydroxyproline, proline, and serine. Separation of the AGPs using reversed-phase high performance liquid chromatography showed that one main fraction was eluted, which tested positive for AGPs by dot-blot analysis using anti-AGP monoclonal antibodies. Sedimentation equilibrium analysis showed that this main fraction contained a 226 kDa species. We have examined the function of AGPs in tracheid differentiation using an established radiata pine callus culture system grown on media containing β-GlcY. The effect of β-GlcY on the cultures was to reduce the overall tracheid differentiation rate in a concentration dependent manner, ultimately resulting in cell death. These studies provide further evidence that AGPs play an important role in tracheid differentiation, and thus may be an important biological target for improving wood quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α-GalY:

α-Galactosyl Yariv reagent

TIM:

Tracheid induction medium

CML:

Compound middle lamella

References

  • Albersheim P (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr Res 5:340–345

    Article  CAS  Google Scholar 

  • Basile D, Basile M (1987) The occurrence of cell wall-associated arabinogalactan proteins in the Hepaticae. Bryologist 90:401–404

    Article  Google Scholar 

  • Blakeney A, Harris P, Henry R, Stone B (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  • Bobalek J, Johnson M (1983) Arabinogalactan-proteins from Douglas fir and loblolly pine. Photochemistry 22:1500–1503

    Article  CAS  Google Scholar 

  • Bollag D, Rozycki M, Edelstein S (1996) Protein methods. Wily, New York

    Google Scholar 

  • Brown C (2000) The global outlook for future wood supply from forest plantations. Report. Global forest products outlook study working paper series. Food and Agriculture Organization of the United Nations, Forestry Policy and Planning Division, Rome

    Google Scholar 

  • Chapman A, Blervacq A, Vasseur J, Hilbert J (2001) Arabinogalactan-proteins in Cichorium somatic embyrogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211:305–314

    Article  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217

    Article  CAS  Google Scholar 

  • Clarke A, Anderson R, Stone B (1979) Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18:521–540

    Article  CAS  Google Scholar 

  • Ding L, Zhu J (1997) A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 203:289–294

    Article  PubMed  CAS  Google Scholar 

  • Dolan L, Linstead P, Roberts K (1995) An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the Arabidopsis root. Protoplasma 189:149–155

    Article  CAS  Google Scholar 

  • Du H, Simpson J, Moritz RL, Clarke AE, Bacic A (1994) Isolation of the protein backbone of an arabinogalactan-protein from the styles of Nicotiana alta and characterization of a corresponding cDNA. Plant Cell 6:1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Egertsdotter U, von Arnold S (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway Spruce (Picea abies). Physiol Plant 93:334–345

    Article  CAS  Google Scholar 

  • Fincher GB, Stone BA (1974) A water soluble arabinogalactan-peptide from wheat endosperm. Aust J Biol Sci 27:117–132

    CAS  Google Scholar 

  • Fincher G, Stone B (1983) Arabinogalactan-proteins: structure, biosynthesis and function. Annu Rev Plant Physiol 34:47–70

    Article  CAS  Google Scholar 

  • Fincher GB, Sawyer WH, Stone BA (1974) Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm. Biochem J 139:535–545

    PubMed  CAS  Google Scholar 

  • Gane A, Craik D, Munro S, Howlett G, Clarke A, Bacic A (1995) Structural analysis of the carbohydrate moiety of arabinogalactan-proteins from stigmas and styles of Nicotiana alta. Carbohydr Res 277:67–85

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Showalter A (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19:321–331

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Kieliszewski M, Lamport D, Showalter A (1999) Isolation, characterization and immunolocalization of a novel, modular tomato arabinogalactan-protein corresponding to the LeAGP-1 gene. Plant J 18:43–55

    Article  PubMed  CAS  Google Scholar 

  • Gaspar Y, Johnson K, McKenna J, Bacic A, Schultz C (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47:161–176

    Article  PubMed  CAS  Google Scholar 

  • Hotter G (1997) Elicitor-induced oxidative burst and phenylpropanoid metabolism in Pinus radiata cell suspension cultures. Aust J Plant Physiol 24:797–804

    Article  CAS  Google Scholar 

  • Johnson K, Jones B, Schultz C, Bacic A (2003) Non-enzymic cell wall (glyco)proteins. In: Rose JKC (ed) The plant cell wall. Blackwell, Oxford, pp 111–154

    Google Scholar 

  • Karacsonyi S, Patoprsty V, Kubackova M (1998) Structural study on arabinogalactan-proteins from Picea abies L. Karst. Carbohydr Res 307:271–279

    Article  CAS  Google Scholar 

  • Kim J, Carpita N (1992) Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles. Plant Physiol 98:646–653

    Article  PubMed  CAS  Google Scholar 

  • Knox J, Linstead P, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1:317–326

    Google Scholar 

  • Komalavilas P, Zhu J, Nothnagel E (1991) Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. J Biol Chem 24:15956–15965

    Google Scholar 

  • Kreuger M, van Holst G (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197:135–141

    Article  CAS  Google Scholar 

  • Kreuger M, van Holst G (1996) Arabinogalactan proteins and plant differentiation. Plant Mol Biol 30:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Lafarguette F, Leple J, Dejardin A, Laurans F, Costa G, Lesage-Descauses M, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  • Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. Analytical ultracentrifugation in biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, pp 90–125

    Google Scholar 

  • Lee K, Sakata Y, Mau S, Pettolino F, Bacic A, Quatrano R, Knight C, Knox P (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bruun L, Pierson E, Cresti M (1992) Periodic deposition of arabinogalactan epitopes in the cell wall of pollen tubes of Nicotiana tabacum L. Planta 188:532–538

    Article  CAS  Google Scholar 

  • Loopstra C, Sederoff R (1995) Xylem-specific gene expression in loblolly pine. Plant Mol Biol 27:277–291

    Article  PubMed  CAS  Google Scholar 

  • Loopstra C, Puryear J, No E (2000) Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta 210:686–689

    Article  PubMed  CAS  Google Scholar 

  • Majewska-Sawka A, Nothangel E (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–9

    Article  PubMed  CAS  Google Scholar 

  • Millar C (1999) Evolution and biogeography of Pinus radiata, with a proposed revision of its quarternary history. N Z J For Sci 29:335–365

    Google Scholar 

  • Mollard M, Basile D (2000) Acacia senegal cells cultured in suspension secrete a hydroxyproline-deficient arabinogalactan protein. Plant Physiol Biochem 32:703–709

    Google Scholar 

  • Möller R, Ball R, Henderson A, Modzel G, Find J (2006) Effect of light and activated charcoal on tracheary element differentiation in callus cultures of Pinus radiata D. Don. Plant Cell Tissue Org 85:161–171

    Article  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel E (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    Article  PubMed  CAS  Google Scholar 

  • Oxley D, Bacic A (1999) Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci USA 96:14246–14251

    Article  PubMed  CAS  Google Scholar 

  • Pennell R, Knox P, Scofield G, Selvendran R, Roberts K (1989) A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants. J Cell Biol 108:1967–1977

    Article  PubMed  CAS  Google Scholar 

  • Putoczki T, Nair H, Butterfield B, Jackson S (2007) Intra-ring checking in Pinus radiata D. Don: The occurrence of cell wall fracture, cell collapse, and lignin distribution. Trees Struct Funct 21:221–229

    CAS  Google Scholar 

  • Roy S, Jauh G, Hepler P, Lord E (1998) Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta 204:450–458

    Article  PubMed  CAS  Google Scholar 

  • Samson M, Jongeneel R, Klis F (1984) Arabinogalactan protein in the extracellular space of Phaseolus vulgaris hypocotyls. Phytochemistry 23:493–496

    Article  CAS  Google Scholar 

  • Schopfer P (1990) Cytochemical identification of arabinogalactan protein in the outer epidermal wall of maize coleoptiles. Planta 183:139–142

    Google Scholar 

  • Schultz C, Johnson K, Currie G, Bacic A (2000) The classical arabinogalactan-protein gene family of Arabidopsis. Plant Cell 12:1751–1767

    Article  PubMed  CAS  Google Scholar 

  • Scott C (1960) Pinus radiata. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Serpe M, Nothnagel E (1994) Effects of Yariv phenylglycosides on rose cell-suspensions—evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 4:542–550

    Article  Google Scholar 

  • Showalter A (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Sims I, Bacic A (1995) Extracellular polysaccharides from suspension cultures of Nicotiana plumbaginifolia. Phytochemistry 38:1397–1405

    Article  CAS  Google Scholar 

  • Sommer-Knudsen J, Bacic A, Clarke A (1998) Hydroxyproline-rich plant glycoproteins. Phytochemistry 47:483–497

    Article  CAS  Google Scholar 

  • Stacey N, Roberts K, Knox P (1990) Patterns of expression of the JIM4 arabinogalactan-protein epitope in cell cultures during somatic embryogenesis in Daucua carota L. Planta 180:285–292

    Article  CAS  Google Scholar 

  • Sutton W (1999) The need for planted forests and the example of radiata pine. New For 17:95–109

    Google Scholar 

  • Triplett B, Timpa J (1997) β-glucosyl and α-glucosyl Yariv reagents bind to cellulose and other glucans. J Agric Food Chem 45:4650–4654

    Article  CAS  Google Scholar 

  • Van Holst G, Clarke A (1985) Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal Biochem 148:446–450

    Article  PubMed  Google Scholar 

  • Vistica J, Dam J, Balbo A, Yikilmaz E, Mariuzza RA, Rouault TA, Schuck P (2004) Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal Biochem 326:234–256

    Article  PubMed  CAS  Google Scholar 

  • Willats W, McCartney L, Mackie W, Knox P (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Wang H, Pratheesh S, Claudio S, Loopstra C (2005) Real-time RT-PCR analysis of loblolly pine (Pinus taeda) arabinogalactan-protein and arabinogalactan-protein-like genes. Physiol Plant 124:91–106

    Article  CAS  Google Scholar 

  • Yariv J, Rapport M, Graf L (1962) The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J 85:383–389

    PubMed  CAS  Google Scholar 

  • Yates E, Valdor J, Haslam S, Morris H, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Brown G, Whetton R, Loopstra C, Neale D, Kieliszewski M, Sederoff R (2003) An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine. Plant Mol Biol 52:91–102

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Wood Quality Initiative Ltd, New Zealand for a Doctoral Scholarship to support T. Putoczki. We would also like to thank Prof. P. Knox for the kind gift of the monoclonal antibodies, M. Walters and M. Ingerfeld for technical support. T. Putoczki would like to thank the University of Melbourne and Prof. A. Bacic for hosting time as a visiting academic. The authors would like to dedicate this work to the memory of Dr. Sandra Jackson who passed away during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy L. Putoczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putoczki, T.L., Pettolino, F., Griffin, M.D.W. et al. Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins. Planta 226, 1131–1142 (2007). https://doi.org/10.1007/s00425-007-0559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0559-2

Keywords

Navigation