Skip to main content

Advertisement

Log in

Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The biosynthesis of the ketocarotenoid astaxanthin is a subject of scientific and industrial interest. The unicellular green alga Chlorella zofingiensis Dönz is able to grow and accumulate astaxanthin in the dark with exogenous glucose as sole carbon and energy source. In this study, the transcription of β-carotenoid ketolase (BKT) and β-carotenoid hydroxylase (CHYb) genes were surveyed to reveal the regulation of astaxanthin biosynthesis in dark-grown Chlorella zofingiensis. Coupled with glucose analogs and the hexokinase inhibitor glucosamine, we found that phosphorylation of glucose (glucose sensing) was essential to the increased transcription of BKT and CHYb genes and the accumulation of astaxanthin in the dark-grown cells. However, phosphorylation of glucose per se only up-regulated the transcription of CHYb and stimulated the synthesis of zeaxanthin. Blockage of the mitochondrial alternative pathway eliminated the glucose effects on the increased transcription of BKT and astaxanthin accumulation, suggesting that signals from alternative pathway was involved in the up-regulation of BKT transcription. In addition, citrate was shown to up-regulate the transcription of BKT independent of reactive oxygen species formation. Taken altogether, we conclude that in dark-grown Chlorella zofingiensis, the transcription of BKT and CHYb genes are differently regulated by the metabolism of glucose, through which the biosynthesis of astaxanthin is regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACT:

Actin

BKT:

β-Carotenoid ketolase

CHYb:

β-Carotenoid hydroxylase

CTL:

Control

G:

d-glucose

HK:

Hexokinase

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription PCR

References

  • Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008

    Article  PubMed  CAS  Google Scholar 

  • Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK (2004) Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 279:6337–6344

    Article  PubMed  CAS  Google Scholar 

  • Bohne F, Linden H (2002) Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim Biophys Acta Gene Struct Expr 1579:26–34

    CAS  Google Scholar 

  • Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391

    Article  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    Article  PubMed  CAS  Google Scholar 

  • Chen F (2004) Methods for production of astaxanthin from the green microalgae Chlorella in dark-heterotrophic cultures. US Patent (application number: 10/809,862)

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Vonshak A, Gabbay R, Hirshberg J, Cohen Z, Boussiba S (1995) The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine. Plant Cell Physiol 36:1519–1524

    CAS  Google Scholar 

  • Fan L, Vonshak A, Zarka A, Boussiba S (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch [C] 53:93–100

    CAS  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Gray GR, Maxwell DP, Villarimo AR, McIntosh L (2004) Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23:497–503

    Article  PubMed  CAS  Google Scholar 

  • Grünewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268

    Article  PubMed  Google Scholar 

  • Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J Photochem Photobiol B 20:153–160

    Article  CAS  Google Scholar 

  • Hagen C, Braune W, Bjorn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a sunshade. J Phycol 30:241–248

    Article  CAS  Google Scholar 

  • Huang JC, Chen F, Sandmann G (2006a) Stress-related differential expression of multiple beta-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  PubMed  CAS  Google Scholar 

  • Huang JC, Wang Y, Sandmann G, Chen F (2006b) Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479

    Article  PubMed  CAS  Google Scholar 

  • Ip PF, Chen F (2005a) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Ip PF, Chen F (2005b) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11:297–326

    Article  CAS  Google Scholar 

  • Klein D, Stitt M (1998) Effects of 2-deoxyglucose on the expression of rbcS and the metabolism of Chenopodium rubrum cell-suspension cultures. Planta 205:223–234

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Komor E, Schobert C, Cho BH (1985) Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella. Eur J Biochem 146:649–656

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol (in press), doi:10.1016/j.jplph.2007.12.007

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Obokata J (2006) Remote control of photosynthetic genes by the mitochondrial respiratory chain. Plant J 47:873–882

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279

    Article  PubMed  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, Choi SB, Pogson BJ, Park YI (2004) Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 279:25320–25325

    Article  PubMed  CAS  Google Scholar 

  • Salas J, Salas M, Vinuela E, Sols A (1965) Glucokinase of rabbit liver. J Biol Chem 240:1014–1018

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Semenza GL (1999) Perspectives on oxygen sensing. Cell 98:281–284

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Wolf K, Hilgarth C, Tanner W, Sauer N (1995) Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a co-induced galactose-H+ symporter. Plant Physiol 107:33–41

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci USA 95:11482–11488

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1996) Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol 111:589–595

    PubMed  CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria: dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol 109:353–361

    PubMed  CAS  Google Scholar 

  • von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12:625–634

    Article  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Woitsch S, Romer S (2003) Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol 132:1508–1517

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Tanner W, Sauer N (1991) The Chlorella H+/hexose cotransporter gene. Curr Genet 19:215–219

    Article  PubMed  CAS  Google Scholar 

  • Yong YYR, Lee YK (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta). Phycologia 30:257–261

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7623/05M). We are grateful to Dr Qiang Hu at Arizona State University for his critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junchao Huang or Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Huang, J., Sandmann, G. et al. Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228, 735–743 (2008). https://doi.org/10.1007/s00425-008-0775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0775-4

Keywords

Navigation