Skip to main content

Advertisement

Log in

Plant homeostasis of foliar manganese sinks: specific variation in hyperaccumulators

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant manganese (Mn) hyperaccumulation provides unusual insight into homeostasis of this essential micronutrient, in particular its excessive storage in shoot tissues. The compartmentation of hyperaccumulated foliar Mn appears exceptional among metal hyperaccumulators, since it occurs via specific microdistribution patterns. Here, three associated Mn hyperaccumulators, Virotia neurophylla, Maytenus fournieri, and Garcinia amplexicaulis exhibiting distinctly different Mn detoxification strategies were examined. Non-invasive sample preparation in conjunction with cryo scanning electron microscopy (SEM) was used to obtain in vivo quantitative microprobe X-ray and anatomical data from fully hydrated cells. Highly vacuolated large palisade mesophyll cells in V. neurophylla leaves were found to contain around 650 mM Mn. The large non-photosynthetic hypodermal cells of M. fournieri leaves, also with high vacuolar content, and the main site for Mn disposal, had an estimated mean vacuolar Mn concentration of around 600 mM. Previous qualitative X-ray mapping had shown Mn to be almost evenly sequestered across the entire leaf cross section of G. amplexicaulis. However, quantitative data obtained here showed a marked variation in localised concentrations that ranged between ~15 and >800 mM. Notable among these were mean values of >600 mM in spongy mesophyll cells, and ~800 mM within cells of a narrow sub epidermal layer preceding the palisade mesophyll. This study demonstrated the extraordinary Mn carrying capacities of different types of leaf cell vacuoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asemaneh T, Ghaderian SM, Crawford SA, Marshall AT, Baker AJM (2006) Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225:193–202

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 85–108

    Google Scholar 

  • Bastin GF, Heijligers JM, Loo FJJv (1986) A further improvement in the Gaussian Phi–Rho–Zed approach for matrix correction in quantitative electron probe microanalysis. Scanning 8:45–67

    Article  CAS  Google Scholar 

  • Becker M, Kerstiens G, Schonherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees Struct Funct 1:54–60

    CAS  Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knusden J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905

    Article  CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knusden J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator Hybanthus floribundus (Lindley) F Muell. Plant Cell Environ 27:705–716

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maucel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  PubMed  CAS  Google Scholar 

  • Bromfield SM, Cumming RW, David DJ, Williams CH (1983) Change in soil pH, manganese and aluminium under subterranean clover pasture. Aust J Agric Anim Husbandry 23:181–191

    Article  Google Scholar 

  • Clemens (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

  • DeKnecht JA, Koevoets PLM, Verkleij JAC, Ernst WHO (1992) Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol 122:681–688

    Article  CAS  Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, New York

    Google Scholar 

  • Fernando DR, Bakkaus EJ, Perrier N, Baker AJM, Woodrow IE, Batianoff GN, Collins RN (2006a) Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study. New Phytol 171:751–758

    Article  PubMed  CAS  Google Scholar 

  • Fernando DR, Batianoff GN, Baker AJ, Woodrow IE (2006b) In vivo localisation of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ 29:1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2007) Foliar Mn accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localisation by X-ray microanalysis. New Phytol 177:178–185

    PubMed  Google Scholar 

  • Fernando DR, Marshall AT, Gouget B, Carriere M, Collins RN, Woodrow IE, Baker AJ (2008a) Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Funct Plant Biol 35:1–8

    Article  Google Scholar 

  • Fernando DR, Marshall AT, Gouget B, Carrière M, Collins RN, Woodrow IE, Baker AJ (2008b) Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Funct Plant Biol 35:193–200

    Article  CAS  Google Scholar 

  • Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and its potential application in taxonomy. Ann Bot 103:931–939

    Article  PubMed  CAS  Google Scholar 

  • Fernando DR, Mizuno T, Woodrow IE, Baker AJM, Collins RN (2010) Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol 188:1014–1027

    Article  PubMed  CAS  Google Scholar 

  • Foulds W (2003) Nutrient concentrations of foliage and soil in south-western Australia. New Phytol 125:529–546

    Article  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Graham RD, Hannam RJ, Uren NC (1988) Manganese in soils and plants. In Graham RD, Hannam RJ, Uren NC (eds) International symposium on manganese in soils and plants. Kluwer, South Australia

  • Jaffré T (1977) Accumulation du manganèse par des especes associées aux terrains ultrabasiques de Nouvelle-Calédonie. Comptes Rendus Academie des Science, Paris, Série D 284:1573–1575

    Google Scholar 

  • Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Caledonie. ORSTOM, Paris

    Google Scholar 

  • Jeschke WD, Atkins CA, Pate JS (1985) Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J Plant Physiol 117:319–330

    Article  CAS  Google Scholar 

  • Krämer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator Alyssum lesbiacum. Nuclear Instrum Methods Phys Res B Beam Interact Materials Atoms 130:346–350

    Article  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao F, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Lauchli A, Spurr AR, Wittkopp RW (1970) Electron probe analysis of freeze-substituted, epoxy resin embedded tissue for ion transport studies in plants. Planta 95:341–350

    Article  CAS  Google Scholar 

  • Lindhauer MG (1985) Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.). Zeitschrift für Pflanzenernährung und Bodenkunde 148:654–659

    Article  Google Scholar 

  • Lindhauer MG (1987) Solute concentrations in well-watered and water-stressed sunflower plants differing in K nutrition. J Plant Nutr 10:1965–1973

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    Article  CAS  Google Scholar 

  • Marschner H (2002) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marshall AT (1980) Freeze-substitution as a preparation technique for biological X-ray microanalysis. Scan Electron Microsc II:395–408

    Google Scholar 

  • Marshall AT (1982) Application of O (fÏz) curves and a windowless detector to the quantitative x-ray microanalysis of frozen-hydrated bulk biological specimens. Scan Electron Microsc 1:243–260

    Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Pineda CA (2001) Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S Afr J Sci 97:591–593

    CAS  Google Scholar 

  • Mizuno T, Asahina R, Hosono A, Tanaka A, Senoo K, Obata H (2008) Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J Plant Nutr 31:1811–1819

    Article  CAS  Google Scholar 

  • Montargés-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel J-L (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69:1695–1709

    Article  PubMed  Google Scholar 

  • Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  CAS  Google Scholar 

  • Pallaghy CK (1973) Electron probe microanalysis of potassium and chloride in freeze-substituted leaf sections of Zea mays. Aust J Biol Sci 26:1015–1034

    CAS  Google Scholar 

  • Proctor J, Phillips C, Duff GK, Heany A, Robertson FM (1989) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. II Some forest processes. J Ecol 77:317–331

    Article  CAS  Google Scholar 

  • Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooija R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  PubMed  CAS  Google Scholar 

  • Shah A, Shigeru K, Shigenao K (2000) Phytosiderosphore release from manganese-induced iron deficiency in barley. J Plant Nutr 23:1193–1207

    Article  Google Scholar 

  • Siman A, Cradock FW, Hudson AW (1974) The development of manganese toxicity in pasture legumes under extreme climatic conditions. Plant Soil 41:129–140

    Article  CAS  Google Scholar 

  • Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63:870–879

    Article  PubMed  CAS  Google Scholar 

  • Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Xu X, Shi J, Chen Y, Chen X, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285:323–331

    Article  CAS  Google Scholar 

  • Xu X, Shi J, Chen X, Chen Y, Hu T (2009) Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318:197–204

    Article  CAS  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  PubMed  CAS  Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54:441–446

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Melbourne and La Trobe University. The authors thank Vincent Dumontet and the late Nicolas Perrier for their help and expertise in identifying plants in the field. DRF acknowledges the University of Melbourne David Hay Award for financial contribution towards preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise R. Fernando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernando, D.R., Woodrow, I.E., Baker, A.J.M. et al. Plant homeostasis of foliar manganese sinks: specific variation in hyperaccumulators. Planta 236, 1459–1470 (2012). https://doi.org/10.1007/s00425-012-1699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1699-6

Keywords

Navigation