Skip to main content
Log in

Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A metabolic profiling including calculation of energy cost of amino acids biosynthesis in cultured cells of Scrophularia striata showed that methyl jasmonate-inducible oxidative stress elicited secondary metabolites formation derived from phenylalanine and tyrosine and increased energy cost for these amino acids biosynthesis.

Understanding of the metabolic pathways in cell culture of Scrophularia striata, an aromatic plant species, facilitates means of production of pharmaceutical metabolites under oxidative stress. In this study, we evaluated the effects of MeJA on the S. striata metabolic pathway and the responses to oxidative stress. Exposure to methyl jasmonate (MeJA) affects plant growth, effectively induces production of reactive oxygen species (ROS) and inserts oxidative stress at the cellular level which results in alteration of primary metabolites and production of phenylepropanoid compounds. Cells treated with MeJA indicated increase in the activities of three antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPx) as well as intracellular H2O2 and MDA contents compared with mock-treated cells. High performance liquid chromatography (HPLC)-based metabolome analysis revealed dynamic metabolic changes in oxidatively stressed S. striata cells, e.g., general phenylpropanoid pathway, phenylethanoid-glycosides, lignans, and increased energy cost of biosynthesis and accumulation of amino acids. Furthermore, principal component analysis (PCA)—derived score plots demonstrated that MeJA affects cellular metabolism in S. striata cells and significantly alters metabolite composition under MeJA-inducible oxidative stress. These observations suggest that MeJA-elicited cell suspension cultures of S. striata balanced the production of primary and secondary metabolites in coordination with ROS-scavenging system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BA:

Benzyl adenine

BSA:

Bromo serum albumin

CAD:

Cinnamyl alcohol dehydrogenase

CAT:

Catalase

DW:

Dry weight

FW:

Fresh weight

GPx:

Guaiacol peroxidase

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

MeJA:

Methyl jasmonate

MS:

Murashige and Skoog’s medium

NAA:

Naphthylacetic acid

NBT:

Nitrotetrazolium blue chloride

O2−:

Superoxide anion

PCA:

Principal component analysis

PhGs:

Phenylethanoid-glycosides

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Ali MB, Yu KW, Hahn EJ, Paek KY (2005) Differential responses of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain panax ginseng CA Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Sci 169:83–92

    Article  CAS  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Khan I, Xue L (2011) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci 197:296–301

    Article  CAS  Google Scholar 

  • Barber MS, McConnell VS, DeCaux BS (2000) Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochem 54(1):53–56

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Biermann M, Bardl B, Vollstädt S, Linnemann J, Knüpfer U, Seidel G, Horn U (2013) Simultaneous analysis of the non-canonical amino acids norleucine and norvaline in biopharmaceutical-related fermentation processes by a new ultra-high performance liquid chromatography approach. Amino Acids 44(4):1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Clark NR, Ma’ayan A (2011) Introduction to statistical methods to analyze large data sets: Principal components analysis. Sci Signal. doi:10.1126/scisignal.2001967

    Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol 48(1):355–381

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics: the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Fougère F, Rudulier DL, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagege D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue Organ Cult 89(1):1–13

    Article  CAS  Google Scholar 

  • Gigliotti E (2007) Discovering statistics using SPSS. J Adv Nurs 58(3):303–304

    Article  Google Scholar 

  • Hanik N, Gó mez S, Best M, Schueller M, Orians CM, Ferrieri RA (2010) Partitioning of new carbon as11Cin Nicotiana tabacum reveals insight into methyl jasmonate induced changes in metabolism. J Chem Ecol 36(10):1058–1067

    Article  CAS  PubMed  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung KT, Kao CH (1998) Involvement of lipid peroxidation in methyl jasmonate-promoted senescence in detached rice leaves. Plant Growth Regul 24:17–21

    Article  CAS  Google Scholar 

  • Ishikawa T, Takahara K, Hirabayashi T, Matsumura H, Fujisawa S, Terauchi R, Uchimiya H, Kawai-Yamada M (2010) Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1. Plant Cell Physiol 51(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • James JT, Tugizimana F, Steenkamp PA, Dubery IA (2013) Metabolomic analysis of methyl jasmonate-induced triterpenoid production in the medicinal herb Centella asiatica (L.) urban. Molecules 18(4):4267–4281

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136(4):4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanpour-Ardestani N, Sharifi M, Behmanesh M (2015) Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology 67(3):475–485

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Kim Y, Cho E, Kwak S, Kwon S, Bae J, Huh GH (2004) Alterations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweet potato. Phytochem 65:2471–2484

    Article  CAS  Google Scholar 

  • Liu Y, Pan QH, Yang HR, Liu YY, Huang WD (2008) Relationship between H2O2 and Jasmonic acid in Pea leaf wounding response. Russ J Plant Physiol 55(6):851–862

    Article  Google Scholar 

  • Mayer RR, Cherry JH, Rhodes D (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol 94:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills DR, Lee JM (1996) A simple, accurate method for determining wet and dry weight concentrations of plant cell suspension cultures using microcentrifuge tubes. Plant Cell Rep 15:634–636

    Article  CAS  PubMed  Google Scholar 

  • Monsef-Esfahani HR, Hajiaghaee R, Shahverdi AR, Khorramizadeh MR, Amini M (2010) Flavonoids, cinnamic acid and phenylpropanoid from aerial parts of Scrophularia striata. Pharm Biol 48:333–336

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:437–493

    Article  Google Scholar 

  • Nejad ES, Askari H, Soltani S (2012) Regulatory TGACG-motif may elicit the secondary metabolite production through inhibition of active Cyclin-dependent kinase/Cyclin complex. Plant Omics J 5(6):553–558

    CAS  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant, Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Parra-Lobato MC, Fernandez-Garcia N, Olmos E, Alvarez-Tinaut MC, Gomez-Jimenez MC (2009) Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ Exper Bot 66:9–17

    Article  CAS  Google Scholar 

  • Saisavoey T, Thongchul N, Sangvanich P, Karnchanatat A (2014) Effect of methyl jasmonate on isoflavonoid accumulation and antioxidant enzymes in Pueraria mirifica cell suspension culture. J Med Plants Res 8(9):401–407

    Article  CAS  Google Scholar 

  • Sircar D, Mitra A (2008) Evidence for p-hydroxybenzoate formation involving enzymatic phenylpropanoid side-chain cleavage in hairy roots of Daucus carota. J Plant Physiol 165(4):407–414

    Article  CAS  PubMed  Google Scholar 

  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65(2):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Lu X, Hu Y, Li W, Hong K, Mo Y, Cahill DM, Xie J (2013) Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana. Sci Hort 164:484–490

    Article  CAS  Google Scholar 

  • Velikova V, Yordancv I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6):1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang SY (1999) Methyl jasmonate reduces water stress in strawberry. J Plant Growth Regul 18(3):127–134

    Article  PubMed  Google Scholar 

  • Wang HL, Lee PD, Liu LF, Su JC (1999) Effects of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Bot Bull Acad Sin 40:219–225

    CAS  Google Scholar 

  • Wyrambik D, Grisebach H (1975) Purification and properties of isoenzymes of cinnamyl alcohol dehydrogenase from soybean cell suspension cultures. Eur J Biochem 59:9–15

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhao B, Ou Y, Wang X, Yuan X, Wang Y (2006) Elicitor-enhanced syringing production in suspension cultures of Saussurea medusa. World J Microb Biotechnol 23:965–979

    Article  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate Tarbiat Modares University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghnezhad, E., Sharifi, M. & Zare-Maivan, H. Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells. Planta 244, 75–85 (2016). https://doi.org/10.1007/s00425-016-2476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2476-8

Keywords

Navigation