Skip to main content

Advertisement

Log in

Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches

  • Review
  • Published:
Planta Aims and scope Submit manuscript

A Correction to this article was published on 08 July 2022

This article has been updated

Abstract

Legumes, being angiosperm’s third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in ‘omics’ areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez- Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(18):1–38. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • Adebowale YA, Schwarzenbolz U, Henle T (2011) Protein isolates from bambara groundnut (Voandzeia subterranean L.): Chemical characterization and functional properties. Int J Food Prop 14:758–775

    Article  CAS  Google Scholar 

  • Ademiluyi AO, Oboh G (2011) Antioxidant properties of condiment produced from fermented bambara groundnut (Vigna subterranea L. Verdc). J Food Biochem 35:1145–1160. https://doi.org/10.1111/j.1745-4514.2010.00441.x

    Article  CAS  Google Scholar 

  • Aditya JP, Bhartiya A, Chahota RK, Joshi D, Chandra N, Kant L, Pattanayak A (2019) Ancient orphan legume horse gram: a potential food and forage crop of future. Planta 250:891–909. https://doi.org/10.1007/s00425-019-03184-5

    Article  CAS  PubMed  Google Scholar 

  • Agbicodo EM, Fatokun CA, Bandyopadhyay R, Wydra K, Diop NN, Muchero W, Ehlers RGF, Van der Linden CG (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica 175:215–226. https://doi.org/10.1007/s10681-010-0164-5

    Article  CAS  Google Scholar 

  • Akibode S, Maredia M (2011) Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food and Resource Economics: Michigan State University

  • Almeida NF, Gonçalves L, Lourenço M, Julião N, Aznar-Fernández T, Rubiales D, Vaz Patto MC (2016) The pursuit of resistance sources to biotic stresses in Lathyrus sativus. In: 2nd International Legume Society Conference. Tróia, Portugal, 11–14 October

  • Amaya N, Meldrum G, Padulosi S. Cifuentes R (2018) Marketing prospects of tepary bean (Phaseolus acutifolius) in Guatemala through an analysis of common bean value chain, p. 4

  • Andersen P (2012) Challenges for under-utilized crops illustrated by rice bean (Vigna umbellata) in India and Nepal. Int J Agric Sustain 10(2):164–174

    Article  Google Scholar 

  • Andriati N, Anggrahini S, Setyaningsih W, Sofiana I, Pusparasi DA, Mossberg F (2018) Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Res 2(5): 481–485. https://doi.org/10.26656/fr.2017.2(5).300

  • Arinathan V, Mohan VR, Maruthupandian A, Athiperumalsami T (2009) Chemical evaluation of raw seeds of certain tribal pulses in Tamil Nadu, India. Trop Subtrop Agroecosyst 10:287–294

    Google Scholar 

  • Armstead I, Huang L, Ravagnani A, Robson P, Ougham H (2009) Bioinformatics in the orphan crops. Brief Bioinform 10(6):645–653

    Article  CAS  PubMed  Google Scholar 

  • Atoyebi JO, Osilesi O, Abberton M, Adebawo O, Oyatomi O (2018) Quantification of selected anti-nutrients and bioactive compounds in african bambara groundnut (Vigna subterranea (L.) Verdc.). Am J Food Nutr 6(3): 88–95. https://doi.org/10.12691/ajfn-6-3-5

  • Azam-Ali S, Sesay A, Karikari S, Massawe F, Aguilar-Manjarrez J, Bannayan M, Hampson K (2001) Assessing the potential of an underutilized crop - a case study using bambara groundnut. Exp Agric 37:433–472

    Article  Google Scholar 

  • Bajaj M (2014) Nutrients and anti-nutrients in rice bean (Vigna umbellata) varieties as affected by soaking and pressure cooking. Asian J Dairy Food Res 33:71–74

    Article  Google Scholar 

  • Baldermann S, Blagojević L, Frede K, Klopsch R, Neugart S, Neumann A, Ngwene B, Norkeweit J, Schröter D, Schröter A, Schweigert FJ, Wiesner M, Schreiner M (2016) Are neglected plants the food for the future? Crit Rev Plant Sci. https://doi.org/10.1080/07352689.2016.1201399

    Article  Google Scholar 

  • Bamshaiye O, Adegbola J, Bamshaiye E (2011) Bambara groundnut: An under-utilized nut in Africa. Adv Agric Biotechnol 1:60–72

    Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381. https://doi.org/10.1034/j.13993054.2000.100402.x

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2004) Food chemistry. New York: 3rd Edn. Springer

  • Bepary RH, Wadikar DD, Neog SB, Patki PE (2017) Studies on physico-chemical and cooking characteristics of rice bean varieties grown in NE region of India. J Food Sci Technol 54(4):973–986. https://doi.org/10.1007/s13197-016-2400-z

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj J, Yadav SK (2015) Drought stress tolerant horse gram for sustainable agriculture. Sustain Agric Rev 15:293–328

    Article  Google Scholar 

  • Bhardwaj HL, Hamama AA (2005) Oil and fatty acid composition of tepary bean seed. HortScience 40(5): 1436–1438. 10.21273/ HORTS CI.40.5.1436

  • Bhardwaj HL, Rangappa M, Hamama AA (2002) Planting date and genotype effects on tepary bean productivity. HortScience 37(2):317–318

    Article  Google Scholar 

  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK (2013) Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genom 14:647. https://doi.org/10.1186/1471-2164-14-647

    Article  CAS  Google Scholar 

  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M et al (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382(9890):427–451

    Article  PubMed  Google Scholar 

  • Bonthala VS, Mayes K, Moreton J, Blythe MJ, Wright V, May ST, Massawe F, Mayes S, Twycross J (2016) Identification of gene modules associated with low temperatures response in bambara groundnut by network-based analysis. PLoS One. https://doi.org/10.1371/journal.pone.0148771

    Article  PubMed  PubMed Central  Google Scholar 

  • Bora P (2014) Anti-nutritional factors in foods and their effects. J Acad Indust Res 3:285–290

    Google Scholar 

  • Borade VP, Kadam SS, Salunke DK (1984) Changes in phytate phosphorus and minerals during germination and cooking of horse gram and moth bean. Plant Foods Hum Nutr 34:151–157

    Article  CAS  Google Scholar 

  • Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Haruna M, Diallo S, Umar ML, Olufajo O, Fatokun C (2018) Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed 2018:1–10. https://doi.org/10.1111/pbr.12589

    Article  Google Scholar 

  • Boukar O, Fatokun CA, Huynh B-L, Roberts PA, Close TJ (2016) Genomic tools in cowpea breeding programs: Status and perspectives. Front Plant Sci 7:757. https://doi.org/10.3389/fpls.2016.00757

    Article  PubMed  PubMed Central  Google Scholar 

  • Brough SH, Azam-Ali SN, Taylor AJ (1993) The potential of Bambara groundnut in vegetable milk production and basic protein functionality system. J Food Chem 47:227–283

    Article  Google Scholar 

  • Brzin J, Kidrič M (1996) Proteinases and their inhibitors in plants: role in normal growth and in response to various stress conditions. Biotechnol Genet Eng Rev 13(1):421–468. https://doi.org/10.1080/02648725.1996.10647936

    Article  CAS  Google Scholar 

  • Buirchell B, Cowling W (1992) Domestication of rough seeded lupins. J Agric Western Australia (4thSeries), 33: 131–137

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192. https://doi.org/10.1007/s00344-0099088-5

    Article  CAS  Google Scholar 

  • Carmona-Garcia R, Osoria-Diaz P, Agama-Acevedo E, Tovar J, Bello Perez LA (2007) Composition and effect of soaking on starch digestibility of Phaseolus vulgaris (L.) cv., ‘Mayocoba.’ Int J Food Sci Technol 42:296–302

    Article  CAS  Google Scholar 

  • Carvajal-Larenas FE, Linnemann AR, Nout MJR, Koziol M, van Boekel MAJS (2016) Lupinus mutabilis: Composition, uses, toxicology, and debittering. Crit Rev Food Sci Nutr 56:1454–1487

    Article  CAS  PubMed  Google Scholar 

  • Carvalho ISD, Chaves M, Pinto Ricardo C (2005) Influence of water stress on the chemical composition of seeds of two lupins (Lupinus albus and Lupinus mutabilis). J Agron Crop Sci 191(2):95–98

    Article  Google Scholar 

  • Carvalho M, Lino Neto T, Rosa E, Carnide V (2017) Cowpea: a legume crop for a challenging environment. J Sci Food Agr 97:4273–4284

    Article  CAS  Google Scholar 

  • Catarino S, Duarte MC, Costa E, Carrero PG, Romeiras MM (2019) Conservation and sustainable use of the medicinal leguminosae plants from Angola. Peer Jl 7:e6736. https://doi.org/10.7717/peerj.6736

    Article  Google Scholar 

  • Celmeli T, Sari H, Canci H, Sari D, Adak A, Eker T, Toker C (2018) The nutritional content of common bean (Phaseolus vulgaris L.) Landraces in comparison to modern varieties. Agronomy. https://doi.org/10.3390/agronomy8090166

    Article  Google Scholar 

  • Champ MMJ (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88:307–319

    Article  Google Scholar 

  • Chandel KP, Joshi BS, Arora RK, Part KC (1978) Rice bean—a new pulse with high potential. Indian Farm 28:19–22

    Google Scholar 

  • Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Van Deynze A, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X (2018) Genomic data of the bambara groundnut (Vigna subterranea). GigaScience. https://doi.org/10.5524/101055

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman MA (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci. https://doi.org/10.3732/apps.1400111

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72(10):1293–1307. https://doi.org/10.1016/j.phytochem.2011.01.024

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary HK, Sharma P, Manoj NV, Singh K (2019) New frontiers in chromosome elimination-mediated doubled haploidy breeding: Focus on speed breeding in bread and durum wheat. Indian J Genet 79(1 Supplementary): 254–263

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138(4):2099–2107

    Article  CAS  PubMed  Google Scholar 

  • Chen C (2016) Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and ageing. Oxid Med Cell Long. https://doi.org/10.1155/2016/3571614

    Article  Google Scholar 

  • Chen H, Wang L, Liu X, Hu L, Wang S, Cheng X (2017) De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. BMC Genet 18(1):1–12

    Article  Google Scholar 

  • Cheng A (2018) Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci 269:136–142

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Raai MN, Zain NAM, Massawe F, Singh A, Wan-Mohtar WAAQI (2019) In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Secur 11:1205–1215. https://doi.org/10.1007/s12571-019-00977-0

    Article  Google Scholar 

  • Chimwamurombe PM (2011) Domestication of [Tylosema esculentum (Burchell) Schreiber] (Marama bean): A work in Progress in Namibia. Biosci Biotechnol Res Asia 8(2):549–556

    Article  Google Scholar 

  • Chinnapun D (2018) Antioxidant activity and DNA protection against oxidative damage of bambara groundnut seeds (Vigna subterranea (L.) Verdc.) as affected by processing methods. Int J Food Proper 21(1):1661–1669. https://doi.org/10.1080/10942912.2018.1504065

    Article  CAS  Google Scholar 

  • Chiurugwi T, Kemp S, Powell W, Hickey LT (2019) Speed breeding orphan crops. Theor Appl Genet 132:607–616. https://doi.org/10.1007/s00122-018-3202-7

    Article  PubMed  Google Scholar 

  • Chivenge P, Mabhaudhi T, Modi AT, Mafongoya P (2015) The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int J Environ Res Public Health 12:5685–5711. https://doi.org/10.3390/ijerph120605685

    Article  PubMed  PubMed Central  Google Scholar 

  • Clements JC, Buirchell B, Yang H, Smith PMC, Sweetingham MW, Smith GC (2006) Lupin. In: Singh RJ, Jauhar PP (Eds) ‘Genetic resources, chromosome engineering, and crop improvement. Vol. 3’. pp. 231–302, CRC Press: Boca Raton, FL

  • Clements JC, Zvyagin AV, Silva KKMBD, Wanner T, Sampson DD, Cowling WA (2004) Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds. Plant Breed 123:266–270. https://doi.org/10.1111/j.1439-0523.2004.00989.x

    Article  Google Scholar 

  • Cowling W, Buirchell B, Tapia M (1998) “Lupin. Lupinus spp. Promoting the conservation and use of underutilized and neglected crops. 23,” in Institute of Plant Genetics and Crop Plant Resources (Rome, Italy: Gatersleben/International Plant Genetic Resources Institute)

  • Crespo-Muñoz S, Rivera-Peña M, Rosero-Alpala DA, Muñoz-Flórez JE, Rao IM, Muñoz-Florez LC (2018) Pollen viability of tepary bean (Phaseolus acutifolius A. Gray.) mutant lines under water stress conditions and inoculation with rhizobia. Acta Agronomy 67: 319–325. https://doi.org/10.15446/acag.v67n2.57704

  • Croxford AE, Rogers T, Caligari PD, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607. https://doi.org/10.1111/j.1469-8137.2008.02588.x

    Article  CAS  PubMed  Google Scholar 

  • Cullis C, Kunert KJ (2017) Unlocking the potential of orphan legumes. J Exp Bot 68(8):1895–1903. https://doi.org/10.1093/jxb/erw437

    Article  CAS  PubMed  Google Scholar 

  • Cullis C, Chimwamurombe P, Barker N, Kunert K, Vorster J (2018) Orphan legumes growing in dry environments: marama bean as a case study. Front Plant Sci 9:1199. https://doi.org/10.3389/fpls.2018.01199

    Article  PubMed  PubMed Central  Google Scholar 

  • Czubinski J, Grygier A, Siger A (2021) Lupinus mutabilis seed composition and its comparision with other lupin species. J Food Compos Anal 99:103875. https://doi.org/10.1016/j.jfca.2021.103875

    Article  CAS  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol Food Biotechnol Plant Biotechnol 23(2):174–181

    Article  CAS  Google Scholar 

  • Dakora FD (2013) Biogeographic distribution, nodulation and nutritional attributes of underutilized indigenous African legumes. Acta Hort 979:53–64

    Article  Google Scholar 

  • Dalton DA, Russel SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2015) Global synthesis of drought effects on food legume production. PLoS One 10(6):e0127401. https://doi.org/10.1371/journal.pone.0127401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho NM, Vieira RD (1996) Rice bean (Vigna umbellata (Thunb.) Ohwi et Ohashi). In: Nwokolo E, Smartt J (Eds.) Legumes and Oilseeds in Nutrition Published by Chapman & Hall, ISBN 0 412 45930 2, pp. 222–228

  • Coba de la Pena T, Pueyo JJ (2012) Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron Sustain Dev 32(1):65–91

    Article  Google Scholar 

  • Devaraj VR, D’Souza MR (2016) Hyacinth bean (Lablab purpureus): An adept adaptor to adverse environments. Legume Perspect 13:20–22

    Google Scholar 

  • Devi EL, Kumar S, Singh TB, Sharma SK, Beemrote A, Devi CP, Chongtham SK, Singh CH, Yumlembam RA, Haribhushan A, Prakash N, Wani SH (2017) Adaptation strategies and defence mechanisms of plants during environmental stress. In: Ghorbanpour M, Varma A (Eds.), Medicinal plants and environmental challenges, Springer International Publishing AG, https://doi.org/10.1007/978-3-319-68717-9_20, pp: 359–413

  • Dhillon PK, Tanwar B (2018) Rice bean: A healthy and cost-effective alternative for crop and food diversity. Food Secur 10(3):525–535

    Article  Google Scholar 

  • Duke JA (1983) Handbook of Legumes of World Economic Importance. Plenum Press, New York, pp. 102–106, 275–278, 293–296

  • Durga KK, Varma VS, Reddy AVV (2014) Sources of resistance to wilt and YMV in horse gram. J Glob Biosci 3(1):280–284

    Google Scholar 

  • Fan W, Xu JM, Wu P, Yang ZX, Lou HQ, Chen WW, Jin JF, Zheng SJ, Yang JL (2019) Alleviation by abscisic acid of Al toxicity in rice bean is not associated with citrate efflux but depends on ABI5-mediated signal transduction pathways. J Integr Plant Biol 61(2):140–154

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) FAO, IFAD, UNICEF, WFP and WHO. 2018. The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. Rome, FAO

  • Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132:841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25(2):149–164

    Article  PubMed  Google Scholar 

  • Garcia T, Duitama J, Zullo SS, Gil J, Ariani A, Dohle S, Palkovic A, Skeen P, Bermudez-Santana CI, Debouck DG, Martínez-Castillo J, Gepts P, Chacón-Sánchez MI (2021) Comprehensive genomic resources related to domestication and crop improvement traits in Lima bean. Nat Commun 12:702. https://doi.org/10.1038/s41467-021-20921-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A, Hayta S, Melton RE, Steed A, Sarkar A, Carter J, Perkins L, Lord J, Tester M, Osbourn A, Moscou MJ, Nicholson P, Harwood W, Martin C, Domoney C, Uauy C, Hazard B, Wuff BBH, Hickey LT (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Prot 13:2944–2963. https://doi.org/10.1038/s41596-018-0072-z

    Article  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) Tilling without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  CAS  PubMed  Google Scholar 

  • Gomes AM, Rodrigues AP, António C, Rodrigues AM, Leitão AE, Batista-Santos P, Nhantumbo N, Massinga R, Ribeiro-Barros AI, Ramalho JC (2020) Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environm Experim Botany 175:104060

    Article  CAS  Google Scholar 

  • Gondwe TM, Alamu EO, Mdziniso P, Maziya-Dixon B (2019) Cowpea (Vigna unguiculata (L.) Walp.) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Scient Rep 9:15991. https://doi.org/10.1038/s41598-019-52360-w

    Article  CAS  Google Scholar 

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EA, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586

    Article  PubMed  PubMed Central  Google Scholar 

  • Gresta F, Wink M, Prins U, Abberton M, Capraro J, Scarafoni A, Hill G (2017) Lupins in European cropping systems. CABI, Legumes Cropping System, pp 88–108

    Book  Google Scholar 

  • Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P vulgaris) for diversity analysis and comparative mapping. BMC Genom 17:239

    Article  Google Scholar 

  • Gulisano A, Alves S, Martins JN, Trindade LM (2019) Genetics and breeding of Lupinus mutabilis: An emerging protein crop. Front Plant Sci 10:1385. https://doi.org/10.3389/fpls.2019.01385

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulzar M, Minnaar A (2016) Underutilized protein resources from African Legumes. In: Nadathur S, Wanasundara JPD, Scanlin L (Eds.), Sustainable protein sources (pp. 197– 208). South Africa: Academia Express, Hatfield Pretoria. https://doi.org/10.1016/B978-0-12-802778-3.00012-3

  • Gupta S, Pandey A, Kumar A, Pattanayak A (2014) Evaluation of genotypic variation and suitability of rice bean genotypes for mid-altitudes of Meghalaya. Legume Res Int J 37:568–574

    Article  Google Scholar 

  • Habibzadeh Y, Evazi AR, Abedi M (2014) Alleviation drought stress of mungbean (Vigna radiata L.) plants by using arbuscular mycorrhizal fungi. Int J Agric Sci Natl Resour 1:1–6

    Google Scholar 

  • Hackbarth J (1961) Lupinosis in the light of old and new evidence. J Austral Inst Agric Sci 27:1–7

    Google Scholar 

  • Halimi AR, Mayes S, Barkla B, King G (2019) The potential of the underutilized pulse bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J Food Compos Anal 77:47–59

    Article  Google Scholar 

  • Hall A (2012) Phenotyping cowpeas for adaptation to drought. Front Physiol 3:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris T, Jideani V, Roes-Hill ML (2018) Flavonoids and tannin composition of Bambara groundnut (Vigna subterranea) of Mpumalanga, South Africa. Heliyon 4:e00833. https://doi.org/10.1016/j.heliyon.2018.e00833

    Article  PubMed  PubMed Central  Google Scholar 

  • Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B (2017) Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods (Basel, Switzerland) 6(7):53. https://doi.org/10.3390/foods6070053

    Article  CAS  Google Scholar 

  • Heredia-Rodríguez L, Gaytán-Martínez M, Morales-Sánchez E, de Jesús Garza-Juárez A, UriasOrona V, González-Martínez BE, Lomelí ML-C, Vázquez-Rodríguez JA (2019a) Nutritional and technological properties of Tepary bean (Phaseolus acutifolius) cultivated in Mexican Northeast. Czech J Food Sci 37(1):62–68

    Article  Google Scholar 

  • Heredia-Rodríguez L, Gaytán-Martínez M, Morales-Sánchez E, Garza-Juárez AJ, Urias-Orona V, González-Martínez BE, Lomelí MLC, Vázquez-Rodríguez JA (2019b) Nutritional and technological properties of Tepary bean (Phaseolus acutifolius) cultivated in Mexican Northeast. Czech J Food Sci 37(1): 62–68.https://doi.org/10.17221/331/2017-CJFS

  • Ho WK, Chai HH, Kendabie P, Ahmad NS, Jani J, Massawe F, Kilian A, Mayes S (2017) Integrating genetic maps in bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes. BMC Genomics 18:192. https://doi.org/10.1186/s12864-016-3393-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain S, Ahmed R, Bhowmick S, Mamun AA, Hashimoto M (2016) Proximate composition and fatty acid analysis of Lablab purpureus (L) legume seed: Implicates to both protein and essential fatty acid supplementation. Springerplus 5(1):1899. https://doi.org/10.1186/s40064-016-3587-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Pirie EJ, Evans N, Delourme R, King GJ, Fitt BD (2009) Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Plant Pathol 58:314–323

    Article  Google Scholar 

  • Iizuka N (1990) Studies on virus diseases of adzuki bean (Vigna angularis Wight) in Japan. Bull Tohuko Natl Agric Experim Stat 82:77–113

    Google Scholar 

  • Ijarotimi OS, Esho TR (2009) Comparison of nutritional composition and anti-nutrient status of fermented, germinated and roasted bambara groundnut seeds (Vigna subterranea). British Food J 111(4):376–386

    Article  Google Scholar 

  • Isemura M (2019) Catechin in human health and health. Molecules 24(3):528

    Article  PubMed Central  Google Scholar 

  • Iwuoha CI, Umunnakwe KE (1997) Chemical, physical and sensory characteristics of soymilk as affected by processing method, temperature and duration of storage. Food Chem 59:373–379

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JC, Duodu Kwaku G, Holse M, Margarida D, Jordaan D, Chingwaru W, Hansen A, Cencic A, Kandawa-Schultz M, Mpotokwane SM, Chimwamurombe P, de Kock HL, Minaar A (2010) The Marama Bean (Tylosema esculentum): A Potential Crop for Southern Africa. Adv Food Nutr Res 61:187–246. https://doi.org/10.1016/B978-0-12-374468-5.00005-2

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Mujica A (2007) Geographical Distribution of the Andean Lupin (Lupinus mutabilis). In: Ochatt S, Jain SM (eds) Breeding of Neglected and Under–utilized Crops, Spices and Herbs, 1st edn. Science Publisher, Enfield, New Hampshire, US., pp 95–107

    Google Scholar 

  • Jamnadass R, Mumm RH, Hale I, Hendre P, Muchugi A, Dawson IK, Powell W, Graudal L, Yana-Shapiro H, Simons AJ, Deynze AV (2020) Enhancing African orphan crops with genomics. Nat Genet 52:356–360. https://doi.org/10.1038/s41588-020-0601-x

    Article  CAS  PubMed  Google Scholar 

  • Jiménez JC, de la Fuente M, Ordás B, García Domínguez LE, Malvar RA (2017) Resistance categories to Acanthoscelides obtectus (Coleoptera: Bruchidae) in tepary bean (Phaseolus acutifolius), new sources of resistance for dry bean (Phaseolus vulgaris) breeding. Crop Prot 98:255–266. https://doi.org/10.1016/j.cropro.2017.04.011

    Article  Google Scholar 

  • Johnson EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5(2):56–65. https://doi.org/10.1046/j.1523-5408.2002.00004.x

    Article  PubMed  Google Scholar 

  • Jombo TZ, Emmambux MN, Taylor JRN (2021) Modification of the functional properties of hard-to-cook cowpea seed flours and cooked prepared pastes by γ-irradiation. J Food Sci Technol 58(1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Kadam NN, Xiao G, Melgar RJ, Bahuguna RN, Quinones C, Tamilselvan A, Prasad PV, Jagadish KS (2014) Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron 127:111–156

    Article  Google Scholar 

  • Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A (2019) Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 22(3):225–237

    PubMed  PubMed Central  Google Scholar 

  • Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology. https://doi.org/10.1155/2014/952943

    Article  PubMed  PubMed Central  Google Scholar 

  • Kala BK, Kalidass C, Mohan VR (2010) Nutritional and antinutritional potential of five accessions of a South Indian tribal pulse Mucuna atropurpurea DC. Trop Subtrop Agroecosyst 12:339–352

    Google Scholar 

  • Kamenya SN, Mikwa EO, Song B, Odeny DA (2021) Genetics and breeding for climate change in Orphan crops. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03755-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK, Lestari P, Laosatit K, Kim KH, Ha TJ (2015) Draft genome sequence of adzuki bean, Vigna angularis. Scient Rep 5(1):1–8. https://doi.org/10.1038/srep08069

    Article  CAS  Google Scholar 

  • Karamanos AJ, Travlos IS (2012) The water relations and some drought tolerance mechanisms of the marama bean. Agron J 104:65–72. https://doi.org/10.2134/agronj2011.0194

    Article  Google Scholar 

  • Kashiwaba K, Tomooka N, Kaga A, Han OK, Vaughan DA (2003) Characterization of resistance to three bruchid species (Callosobruchus spp. Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata). J Econ Entomol 96:207–213

    Article  CAS  PubMed  Google Scholar 

  • Katoch M, Mane RS, Chahota RK (2022) Identification of QTLs Linked to Phenological and Morphological Traits in RILs Population of Horsegram (Macrotyloma uniflorum). Front Genet. https://doi.org/10.3389/fgene.2021.762604

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoch R (2013) Nutritional potential of rice bean (Vigna umbellata): An underutilized legume. J Food Sci 78(1):C8–C16

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Kaur P, Singh N, Virdi AS, Singh P, Rana JC (2013) Grains, starch and protein characteristics of rice bean (Vigna umbellata) grown in Indian Himalaya regions. Food Res Int 54:102–110

    Article  CAS  Google Scholar 

  • Kawsar SMA, Huq E, Nahar N, Ozeki Y (2008) Identification and quantification of phenolic acids in Macrotyloma uniflorum by reversed phase-HPLC. Am J Plant Physiol 3(4):165–172

    Article  CAS  Google Scholar 

  • Kayitesi E, Duodu KG, Minnaar A, de Kock HL (2010) Sensory quality of marama/sorghum composite porridges. J Sci Food Agric 90:2124–2132

    CAS  PubMed  Google Scholar 

  • Khan F, Chai HH, Ajmera I, Hodgman C, Mayes S, Lu C (2017) A transcriptomic comparison of two bambara groundnut landraces under dehydration stress. Genes 8(4):1–19. https://doi.org/10.3390/genes8040121

    Article  CAS  Google Scholar 

  • Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun MA (2021) Genetic analysis and selection of Bambara groundnut (Vigna subterranea [L.] Verdc.) landraces for high yield revealed by qualitative and quantitative traits. Scient Rep 11:7597. https://doi.org/10.1038/s41598-021-87039-8

    Article  CAS  Google Scholar 

  • Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm K, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10(6):2860–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Wie M-B, Ahn M, Tanaka A, Matsuda H, Shin T (2019) Benefits of hesperidin in central nervous system disorders: a review. Anat Cell Biol 52(4):369–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo N, Shimada H, Fujita S (2009) Screening of cultivated and wild adzuki bean for resistance to race 3 of Cadophora gregata f. sp. adzukicola, cause of brown stem rot. J Gen Plant Pathol 75(3):181–187. https://doi.org/10.1007/s10327-009-0161-5

    Article  CAS  Google Scholar 

  • Kritchevsky D, Chen SC (2005) Phytosterols- health benefits and potential concerns: a review. Nutr Res 25(5):413–428

    Article  CAS  Google Scholar 

  • Kumar J, Kant R, Kumar S, Basu PS, Sarker A, Singh NP (2016) Heat tolerance in lentil under field conditions. Legume Genom Genet 7:1–11

    Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: A review. Food Chem 120:945–959

    Article  CAS  Google Scholar 

  • Lawlor DW (2018) Marama bean (Tylosema esculentum): A reviews of morphological and physiological adaptations to environment, and crop potential. pp: 53–85. In: Paplomatas EE, Economou-Antonaka G (Eds.) A Praise of Demeter. Studies in Honour of Professor A. J. Karamanos, Editions Papazissi, Athens, p. 412

  • Lee JH, Ham H, Kim MY, Ko JY, Sim E-Y, Kim H-J, Lee CK, Jeon YH, Jeong HS, Woo KS (2018) Phenolic compounds and antioxidant activity of adzuki bean cultivars. Legum Res 41(5):681–688. https://doi.org/10.18805/LR-381

    Article  Google Scholar 

  • Lee KJ, Ma KH, Cho YH, Lee JR, Chung JW, Lee GA (2017) Phytochemical Distribution and Antioxidant Activities of Korean Adzuki Bean (Vigna angularis) Landraces. J Crop Sci Biotechnol 20(3):205–212. https://doi.org/10.1007/s12892-017-0056-0

    Article  Google Scholar 

  • Li S (1590, Ming Dynasty) (2010) Compendium of Materia Medica (Yunnan Educ Press, Kunming, China), p 255

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2012) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630. https://doi.org/10.1111/nph.12011

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang K, Yang W, Chu L, Chen C, Zhao B, Li Y, Jian J, Yin Z, Wang T, Wan P (2017) Identification of QTL and qualitative trait loci for agronomic traits using SNP markers in the adzuki bean. Front Plant Sci 8:840

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 8(3):167

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Cai Z, Xu B (2017) Characterization and quantification of flavonoids and saponins in adzuki bean (Vigna angularis L.) by HPLC-DAD-ESI-MSn analysis. BMC Chem Central J 11:93

    Article  CAS  Google Scholar 

  • Lo S, Munoz-Amatriain M, Boukar O, Herniter I, Cisse N, Guo YN, Roberts PA, Xu S, Fatokun C, Close TJ (2018) Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp.). Scient Rep 8:6261. https://doi.org/10.1038/s41598-018-24349-4

    Article  CAS  Google Scholar 

  • Longvah T, Ananthan R, Bhaskarachary K, Venkaiah K (2017) Indian food composition tables. National Institute of Nutrition Indian Council of Medical Research Department of Health Research Ministry of Health and Family Welfare, Government of India, Hyderabad, p 501

  • Lonnie M, Hooker E, Brunstrom JM, Corfe BM, Green MA, Watson AW, Williams EA, Stevenson EJ, Penson S, Johnstone AM (2018) Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 10:360

    Article  PubMed Central  Google Scholar 

  • Lucas MM, Stoddard F, Annicchiarico P, Frias J, Martinez-Villaluenga C, Sussmann D, Duranti M, Seger A, Zander PM, Pueyo JJ (2015) The future of lupin as a protein crop in Europe. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00705

    Article  PubMed  PubMed Central  Google Scholar 

  • Maass BL, Angessa TT, Ramme S (2010) Lablab purpureus - A crop lost for Africa? Trop Plant Biol 3:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabhaudhi T, Modi AT (2013) Growth, phenological and yield responses of a bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. South African J Plant Soil 30(2):69–79. https://doi.org/10.1080/02571862.2013.790492

    Article  Google Scholar 

  • Mabhaudhi T, Chimonyo VGP, Chibarabada TP, Modi AT (2017) Developing a roadmap for improving neglected and underutilized crops: a case study of South Africa. Front Plant Sci 8:8. https://doi.org/10.3389/fpls.2017.02143

    Article  Google Scholar 

  • Mabhaudhi T, Chimonyo VGP, Hlahla S, Massawe F, Mayes S, Nhamo L, Modi AT (2019) Prospects of orphan crops in climate change. Planta 250:695–708. https://doi.org/10.1007/s00425-019-03129-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamiro PS, Mbwaga AM, Mamiro DP, Mwanri AW, Kinabo JL (2011) Nutritional quality and utilization of local and improved cowpea varieties in some regions in Tanzania. Afr J Food Agric Nutr Dev 11:4490–4506

    CAS  Google Scholar 

  • Manuja R, Sachdeva S, Jain A, Chaudhary J (2013) A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int J Pharmaceut Sci Rev Res 22(2):109–115

    Google Scholar 

  • Markhart AH (1985) Comparative water relations of Phaseolus vulgaris L. and Phaseolus acutifolius Gray. Plant Physiol 77:113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruatona GN (2008) Physico-Chemical, Nutritional and Functional Properties of Defatted Marama Bean Flour, M.Sc. (Food Science) Dissertation, Department of Food Science, Faculty of Natural and Agricultural Sciences, University of Pretoria Republic of South Africa, December 2008. https://repository.up.ac.za/bitstream/handle/2263/25452/dissertation.pdf;sequence=1.

  • Maruatona GN, Duodu KG, Minnaar A (2010) Physicochemical, nutritional and functional properties of marama bean flour. Food Chem 121:400–405

    Article  CAS  Google Scholar 

  • Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, Zahrulakmal M, Hahiree MKIM, Kendabie P, Licea LCS, Massawe F, Mabhaudhi T, Modi AT, Berchie JN, Amoah S, Faloye B, Abberton M, Olaniyi O, Azam Ali SN (2019) Bambara groundnut: an exemplar underutilised legume for resilience under climate change. Planta 250:803–820. https://doi.org/10.1007/s00425-019-03191-6

    Article  CAS  PubMed  Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63(3):1075–1079

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ, Stewart D (2005) The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 23(4):189–195. https://doi.org/10.1002/biof.5520230403

    Article  CAS  PubMed  Google Scholar 

  • Mhlaba ZB, Amelework B, Shimelis HA, Modi AT, Mashilo J (2018) Genetic interrelationship among tepary bean (Phaseolus acutifolius A. Gray) genotypes revealed through SSR markers. Aust J Crop Sci 12:1587–1595

    Article  CAS  Google Scholar 

  • Miklas PN, Santiago J (1996) Reaction of select tepary bean to bean golden mosaic virus. HortScience, 31: 430–432. 10.21273/ HORTS CI.31.3.430

  • Mishra BK, Chaudhary S, Yasin JK (2018) FabElm_BarcodeDb: matK barcode database of legumes. bioRxiv. https://doi.org/10.1101/241703

    Article  Google Scholar 

  • Mitchell RAC, Keys AJ, Madgwick PJ, Parry MAJ, Lawlor DW (2005) Adaptation of photosynthesis in marama bean - Tylosema esculentum (Burchell a. schreiber) to a high temperature, high radiation, drought-prone environment. Plant Physiol Biochem 43:969–976. https://doi.org/10.1016/j.plaphy.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam SM, Oladzad A, Koh C, Ramsay L, Hart JP, Mamidi S, Hoopes G, Sreedasyam A, Wiersma A, Zhao D, Grimwood J (2021) The tepary bean genome provides insight into evolution and domestication under heat stress. Nat Commun 12(1):1–14

    Article  Google Scholar 

  • Mohamed F, Mohamed M, Schmitz-Eiberger N, Keutgen N, Noga G (2005) Comparative drought postponing and tolerance potentials of two tepary bean lines in relation to seed yield. Afr Crop Sci J 13:49–60

    Google Scholar 

  • Moreira-Araújo RSR, Sampaio GR, Soares RAM, Silva CP, Arêas JAG (2017) Identification and quantification of antioxidant compounds in cowpea. RevistaCiência Agronômica 48(5):799–805

    Article  Google Scholar 

  • Mori M, Maki K, Kawahata T, Kawahara D, Kato Y, Yoshida T, Nagasawa H, Sato H, Nagano AJ, Bethke PC, Kato K (2021) Mapping of QTLs controlling epicotyl length in adzuki bean (Vigna angularis). Breed Sci 71:208–216. https://doi.org/10.1270/jsbbs.20093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison IM, Asiedu EA, Stuchbury T, Powell AA (1995) Determination of lignin and tannin contents of cowpea seed coats. Ann Bot 76:287–290

    Article  CAS  Google Scholar 

  • Mubaiwa J, Fogliano V, Chidewe C, Linnemann AR (2017) Hard-to-cook phenomenon in bambara groundnut (Vigna subterranea (L.) Verdc.) processing: options to improve its role in providing food security. Food Rev Int 33(2):167–194

    Article  CAS  Google Scholar 

  • Mubaiwa J, Fogliano V, Chidewe C, Linnemann AR (2019) Influence of alkaline salt cooking on solubilisation of phenolic compounds of bambara groundnut (Vigna subterranea (L.) Verdc.) in relation to cooking time reduction. LWT Food Sci Technol 107:49–55

    Article  CAS  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25:47–56. https://doi.org/10.1007/s11032-009-9307-6

    Article  PubMed  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2009) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118:849–863. https://doi.org/10.1007/s00122-008-0944-7

    Article  CAS  PubMed  Google Scholar 

  • Muchero W, Roberts PA, Diop NN, Drabo I, Cisse N, Close TJ, Muranaka S, Boukar O, Ehlers JD (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS One 8:e70041. https://doi.org/10.1371/journal.pone.0070041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudryj AN, Yu N, Aukema HM (2014) Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 39:1–8

    Article  Google Scholar 

  • Murevanhema YY (2012) Evaluation of bambara groundnuts (Vigna subterrenea (L.) Verdc) milk fermented with lactic acid bacteria as a probiotic beverage. M.Sc. dissertation. Cape Peninsula University of Technology

  • Muthamilarasan M, Singh NK, Prasad M (2019) Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. Adv Genet. https://doi.org/10.1016/bs.adgen.2019.01.001

    Article  PubMed  Google Scholar 

  • Mwale SE, Shimelis H, Mafongoya P, Mashilo J (2020) Breeding tepary bean (Phaseolus acutifolius) for drought adaptation: a review. Plant Breed. https://doi.org/10.1111/pbr.12806

    Article  Google Scholar 

  • Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata [L.] Walp.). Euphytica 91:181–187

    Article  CAS  Google Scholar 

  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: A review. Int J Mol Sci 20:2541. https://doi.org/10.3390/ijms20102541

    Article  CAS  PubMed Central  Google Scholar 

  • Naeem M, Shabbir A, Ansari AA, Aftab T, Khan MMA, Uddin M (2020) Hyacinth bean (Lablab purpureus L) – An underutilised crop with future potential. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2020.109551

    Article  Google Scholar 

  • National Research Council (2006) Lost crops of Africa. Volume II: Vegetables. Washington, DC: The National Academic Press

  • Nepolo E, Takundwa M, Chimwamurombe PM, Cullis CA, Kunert K (2009) A review of geographical distribution of marama bean [Tylosema esculentum (Burchell) Schreiber] and genetic diversity in the Namibian germplasm. Afr J Biotech 8:2088–2093

    CAS  Google Scholar 

  • Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I (2020) Assessing the genetic diversity of cowpea [Vigna unguiculata (L) Walp] germplasm collections using phenotypic traits and SNP markers. BMC Genet 21:110. https://doi.org/10.1186/s12863-020-00914-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogundele OM, Minnaar A, Emmambux MN (2017) Effects of micronisation and dehulling of pre-soaked bambara groundnut seeds on microstructure and functionality of the resulting flours. Food Chem 214:655–663

    Article  CAS  PubMed  Google Scholar 

  • Omotayo AO, Aremu AO (2021) Marama bean [Tylosema esculentum (Burch.) A. Schreib.]: an indigenous plant with potential for food, nutrition, and economic sustainability. Food Funct 12:2389

    Article  CAS  PubMed  Google Scholar 

  • Orsi DC, Nishi ACF, Carvalho VS, Asquieri ER (2017) Chemical composition, antioxidant activity and development of desserts with azuki beans (Vigna angularis). Braz J Food Technol 20:e2016174. https://doi.org/10.1590/1981-6723.17416

    Article  CAS  Google Scholar 

  • Padulosi S, Hoeschle-Zeledon I (2004) Underutilized plant species: what are they? LEISA Magazine, March issue, 5–6

  • Padulosi S, Cawthornb DM, Meldruma G, Florec R, Hallorand A, Matteie F (2019) Leveraging neglected and underutilized plant, fungi, and animal species for more nutrition sensitive and sustainable food systems. Encyclopaedia Food Secur Sustain 3:361–370. https://doi.org/10.1016/B978-0-08-100596-5.21552-7

    Article  Google Scholar 

  • Padulosi S, Thompson J, Rudebjer P (2013) Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward. Bioversity International, Rome

    Google Scholar 

  • Paiva PMG, Pontual EV, Napoleão TH, Coelho LCB B (2012) Effects of plant lectins and trypsin inhibitors on development, morphology and biochemistry of insect larvae. In: Pourali, Raad VN (Eds.), Larvae: Morphology, Biology and Life Cycle, ISBN: 978–1–61942–662–7 K, Nova Science Publishers, pp. 37–55

  • Paliwal R, Adegboyega TT, Abberton M, Faloye B, Oyatomi O (2021) Potential of genomics for the improvement of underutilized legumes in sub‐Saharan Africa. Legume Science

  • Park SO, Coyne DP, Dursun A, Jung G (1998) Identifying randomly amplified polymorphic DNA (RAPD) markers linked to major genes for common bacterial blight resistance in tepary bean. J Am Soc Horticul Sci 123:278–282

    Article  CAS  Google Scholar 

  • Pattanayak A, Roy S, Sood S, Iangrai B, Banerjee A, Gupta S, Joshi DC (2019) Rice bean: a lesser known pulse with well-recognized potential. Planta 250:73–890. https://doi.org/10.1007/s00425-019-03196-1

    Article  CAS  Google Scholar 

  • Paudel D, Dareus R, Rosenwald J, Munoz-Amatriain M, Rios EF (2021) Genome-wide association study reveals candidate genes for flowering time in cowpea (Vigna unguiculata [L.] Walp.). Front Genet. https://doi.org/10.3389/fgene.2021.667038

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedraza F, Gallego G, Beebe S, Tohme J (1997. Marcadores SCAR y RAPD para laresistencia a la bacteriosiscomun (CBB). In: Singh SP, Voysest O (Eds.), Taller demejoramiento de frijol para el Siglo XXI: Bases para una estrategia para AmericaLatina. CIAT, Cali, Colombia, pp. 130–134

  • Pina-Pérez MC, Pérez FMA (2018) Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends Food Sci Technol 72:114–124

    Article  Google Scholar 

  • Popoola J, Ojuederie O, Omonhinmin C, Adegbite A (2019) Neglected and underutilized legume crops: improvement and future prospects. pp.1–22. In: Recent advances in grain crops research. Publisher Intechopen. https://doi.org/10.5772/intechopen.87069

  • Porcel R, Ruiz-lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa in relation to drought stress tolerance. Plant Mol Biol 60:389–404. https://doi.org/10.1007/s11103-005-4210-y

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruiz-lozano JM, Ruiz-lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  PubMed  Google Scholar 

  • Pottorff M, Ehlers JD, Fatokun C, Roberts PA, Close TJ (2012) Leaf morphology in cowpea [Vigna unguiculata (L.) Walp.]: QTL analysis, physical mapping and identifying candidate gene using synteny with model legume species. BMC Genom 13:234. https://doi.org/10.1186/1471-2164-13-234

    Article  CAS  Google Scholar 

  • Pottorff M, Roberts PA, Close TJ, Lonardi S, Wanamaker S, Ehlers JD (2014) Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp.]. BMC Genom 15:328. https://doi.org/10.1186/1471-2164-15-328

    Article  CAS  Google Scholar 

  • Prasad SK, Singh MK (2015) Horse gram- an underutilized nutraceutical pulse crop: a review. J Food Sci Technol 52(5):2489–2499. https://doi.org/10.1007/s13197-014-1312-z

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Howitt SM (2014) Towards turbocharged photosynthesis. Nature 513:497–498. https://doi.org/10.1038/nature13749

    Article  CAS  PubMed  Google Scholar 

  • Price KR, Lewis J, Wyatt M, Fenwick GR (1988) Flatulence-cause, relation to diet and remedies. Diee Nahrung 32:609–626

    Article  CAS  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, De Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701. https://doi.org/10.1111/j.1469-8137.2004.01285.x

    Article  CAS  PubMed  Google Scholar 

  • Purseglove JW (1968) Tropical Crops: Dicotyledons, Vols. 1 and 2. Longman, London, pp. 273–6, 290–4, 318–21

  • Raman R, Cowley RB, Raman H, Luckett DJ (2014) Analyses using SSR and DArT molecular markers reveal that Ethiopian accessions of White Lupin (Lupinus albus L.) represent a unique gene pool. Open J Genet 4:87–98. https://doi.org/10.4236/ojgen.2014.42012

    Article  Google Scholar 

  • Ramegowda V, Senthil KM (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ramya KT, Fiyaz RA, Yasin JK (2013) SMART agriculture for nutritional security. Curr Sci 105(11):1458

    Google Scholar 

  • Rana DS, Dass A, Rajanna GA, Kaur R (2016) Biotic and abiotic stress management in pulses. Indian J Agron 61:238–248

    Google Scholar 

  • Rathi D, Gayali S, Pareek A, Chakraborty S, Chakraborty N (2019) Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings. Planta 250(3):839–855

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Ramanjulu S, Sudhakar C, Veeranjaneyulu K (1998) Differential sensitivity of stomatal and non-stomatal components to NaCl or Na2SO4 salinity in horsegram, Macrotyloma uniflorum (Lam.). Photosynthetica 35:99–105

    Article  CAS  Google Scholar 

  • Redjeki ES, Ho WK, Shah N, Molosiwa OO (2020) Understanding the genetic relationships between Indonesian bambara groundnut landraces and investigating their origins. Genome 999:1–9

    Google Scholar 

  • Roopashree S, Singh SA, Gowda LR, Appu Rao AG (2006) Dual-function protein in plant defence: seed lectin from Dolichos biflorus (horsegram) exhibits lipoxygenase activity. Biochem J 395:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungnoi O, Suwanprasert J, Somta P, Srinives P (2012) Molecular genetic diversity of Bambara groundnut (Vigna subterranea L. Verdc.) revealed by RAPD and ISSR marker analysis. J Breed Genet 44:87–10

    Google Scholar 

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5: P54 https://doi.org/10.1186/1753-6561-5-S7-P54

  • Sashikala VB, Sreerama YN, Pratape VM, Narasimha HV (2015) Effect of thermal processing on protein solubility of green gram (Phaseolus aureus) legume cultivars. J Food Sci Technol 52(3):1552–1560. https://doi.org/10.1007/s13197-013-1149-x

    Article  CAS  PubMed  Google Scholar 

  • Sathyanarayana N, Pittala RK, Tripathi PK, Chopra R, Singh HR, Belamkar V, Bhardwaj PK, Doyle JJ, Egan AN (2017) Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. BMC Genom 18:409

    Article  CAS  Google Scholar 

  • Shaahu DK, Kaankuka FG, Okpanachi U (2015) Proximate, amino acid, anti-nutritional factor and mineral composition of different varieties of raw Lablab purpureus seeds. Int J Sci Technol Res 4(4):157–161

    Google Scholar 

  • Sharma N, Tiwari N, Vyas M, Khurana N, Muthuraman A, Utreja P (2020) An overview of therapeutic effects of vanillic acid. SPlant Archiv 20:3053–3059

    Google Scholar 

  • Sharma V, Rana M, Katoch M, Sharma PK, Ghani M, Rana JC, Sharma TR, Chahota RK (2015) Development of SSR and ILP markers in horse gram (Macrotyloma uniflorum), their characterization, cross-transferability and relevance for mapping. Mol Breed. https://doi.org/10.1007/s11032-015-0297-2

    Article  Google Scholar 

  • Shivashankar G, Kulkarni RS (1998) Lablab purpureus (L.) Sweet. In: Van der Maesen LJG, Somaatmadja S (Eds) Plant resources of South-East Asia No 1. Pulses. Pudoc Scientific Publishers, Wageningen, the Netherlands, pp: 48–50

  • Siger A, Czubinski J, Kachlicki P, Dwiecki K, Lampart-Szczapa E, Nogala-Kalucka M (2012) Antioxidant activity and phenolic content in three lupin species. J Food Compos Anal 25:190–197

    Article  CAS  Google Scholar 

  • Singh SP, Muñoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89

    Article  Google Scholar 

  • Singh U (1985) Nutritional quality of chickpea (Cicer arietinum L.): Current status and future research needs. Plant Foods Hum Nutr 35(4):339–351

    Article  Google Scholar 

  • Singh S, Mahato AK, Jayaswal PK, Singh N, Dheer M, Goel P, Raje RS, Yasin JK, Sreevathsa R, Rai V, Gaikwad K (2020) A 62K genic-SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp.). Sci Rep 10(1):1–14

    Google Scholar 

  • Singhai B, Shrivastava SK (2006) Nutritive value of new chickpea (Cicer arietinum) varieties. J Food Agric Environ 4(1):48–53

    CAS  Google Scholar 

  • Smartt J (1985) Evolution of grain legumes II. Old and new world pulses of lesser economic importance. Exp Agric 21:1–18

    Article  Google Scholar 

  • Smil V (1997) Some unorthodox perspectives on agricultural biodiversity. The case of legume cultivation. Agr Ecosyst Environ 62:135–144

    Article  Google Scholar 

  • Sodedji FAK, Ryu D, Choi J, Agbahoungba S, Assogbadjo AE, N’Guetta SPA, Jung JH, Nho CW, Kim HY (2022) Genetic Diversity and Association Analysis for Carotenoid Content among Sprouts of Cowpea (Vigna unguiculata L. Walp.). Int J Mol Sci 23(7):3696. https://doi.org/10.3390/ijms23073696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohrabi Y, Heidari G, Weisany W, Golezani KG, Mohammadi K (2012) Some physiological responses of chickpea cultivars to arbuscular mycorrhiza under drought stress. Russ J Plant Physiol 59:708–716

    Article  CAS  Google Scholar 

  • Souter JR, Gurusamy V, Porch TG, Bett KE (2017) Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Sci 57:1160–1171

    Article  Google Scholar 

  • Sreerama YN, Neelam DA, Sashikala VB, Pratape VM (2010a) Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: Seed coat phenolics and their distinct modes of enzyme inhibition. J Agric Food Chem 58(7):4322–4330

    Article  CAS  PubMed  Google Scholar 

  • Sreerama YN, Vadakkoot BS, Vishwas MP (2010b) Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: evaluation of their antioxidant properties. J Agric Food Chem 58:8322–8330

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition 40(2):92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan T, Durairaj C (2007) Biochemical basis of resistance in rice bean, Vigna umbellate Thunb. (Ohwi and Ohashi) against Callosobruchus maculatus F. J Entomol 4(5), 371–378

  • Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C (2018) Syringic acid (SA)- a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557

    Article  CAS  PubMed  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agricul 4:2. https://doi.org/10.1186/s40538-016-0085-1

    Article  Google Scholar 

  • Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ (2016) Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci 7:816. https://doi.org/10.3389/fpls.2016.00816

    Article  PubMed  PubMed Central  Google Scholar 

  • Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S (2013) In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p–coumaric acid and rutin, using food systems. J Sci Food Agric 93:3205–3208

    Article  PubMed  Google Scholar 

  • Strozycki PM, Szczurek A, Lotocka B, Figlerowicz M, Legocki AB (2007) Ferritins and nodulation in Lupinus luteus: iron management in indeterminate type nodules. J Exp Bot 58:3145–3153. https://doi.org/10.1093/jxb/erm152

    Article  CAS  PubMed  Google Scholar 

  • Sudha N, Begum JM, Shambulingappa KG, Babu CK (1995) Nutrients and some anti-nutrients in horse gram (Macrotyloma uniflorum (Lam.) Verdc). Food Nutr Bull 16(1):100

    Article  Google Scholar 

  • Suriyamoorthy P, Subrhamanian H, Kanagasapabathy D (2014) Comparative phytochemical investigation of leaf, stem, flower and seed extracts of Macrotyloma uniflorum L. Indo Am J Pharmaceut Res 4(11):5415–5420

    Google Scholar 

  • Swiecicki W, Rybczynski J, Swiecicki WK (2000) Domestication and genetics of the yellow lupin (Lupinus luteus L.) and the biotechnological improvement of lupins. J Appl Genet 41:11–34

    Google Scholar 

  • Taheri Y, Suleria HAR, Martins N, Sytar O, Beyati A, Yeskaliyeva B, Seitimova G, Salehi G, Semwal P, Painuli S, Kumar A, Azzini E, Martorell M, Setzer WN, Maroyi A, Sharifi-Rad J (2020) Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complem Med Therap 20:241

    Article  CAS  Google Scholar 

  • Taiwo KA, Akanbi C, Ajibola OO (1997) The effects of soaking and cooking time on the cooking properties of two cowpea varieties. J Food Eng 33(3–4):337–346

    Article  Google Scholar 

  • Talukdar D, Biswas AK (2006) An induced internode mutant in grass pea. In: Das RK, Chatterjee S, Sadhukhan GC, Manna GK (Eds.), Perspectives in cytology and genetics (pp. 267–271). Kalyani, India: All India Congress of Cytology and Genetics

  • Thio IG, Tignegre JB, Drabo I, Batieno JTB, Zida EP, Sawadogo M, Sereme P, Ohlson EW, Timko MP (2021) Inheritance and detection of QTL in cowpea resistance to brown blotch disease. J Plant Breed Crop Sci 13(3):123–135

    Article  Google Scholar 

  • Tibe O, Legwatagwata B, Motlogelwa K (2016) The effect of processing on the antinutrients in selected legumes in Botswana. Asian J Agricul Food Sci 4(5):265–269

    Google Scholar 

  • Tiwari BK, Singh N (2012) Pulse chemistry and technology. The Royal Society of Chemistry, United Kingdom

  • Travlos IS, Liakopoulos G, Karabourniotis G, Fasseas C, Karamanos AJ (2008) Circadian leaflet movements of Tylosema esculentum (Burch) A. Schreib, and the abolishment of these diurnal movements by potassium deficiency. J Arid Environm 72:1745–1750. https://doi.org/10.1016/j.jaridenv.2008.03.020

    Article  Google Scholar 

  • Turkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci 168:223–231. https://doi.org/10.1016/j.plantsci.2004.07.032

    Article  CAS  Google Scholar 

  • USDA National Nutrient Database (2014) National nutrient database for standard reference release 27. Available at http://ndb.nal.usda.gov. Accessed in September 2015

  • Uzogara SG, Morton ID, Daniel JW (1992) Effect of water hardness on cooking characteristics of cow pea (Vigna unguilculata L. Walp) seeds. Int J Food Sci Technol 27:49–55

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Taran B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo ML, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  • Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN (2016) Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Scient Rep 6:29070

    Article  CAS  Google Scholar 

  • Verma AK, Singh S (2020) Phytochemical analysis and in vitro cytostatic potential of ethnopharmacological important medicinal plants. Toxicol Rep 7:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang J, Cheng X (2019) Adzuki bean (Vigna angularis (Willd.) Ohwi and Ohashi) breeding. In: Jameel M, Al-Khayri, Jain SM, Johnson DV (Eds.) Advances in Plant Breeding Strategies: Legumes (pp. 1–24). Switzerland: Springer Nature Switzerland AG

  • Wang L, Wang J, Luo G, Yuan X, Gong D, Hu L, Wang S, Chen H, Chen X, Cheng X (2021) Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. J Integr Agric 20(7):1753–1761

    Article  CAS  Google Scholar 

  • Wink M, Meißner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153

    Article  CAS  Google Scholar 

  • Wolko B, Clements J, Naganowska B, Nelson M, Yang H (2011) Lupinus. In ‘Wild crop relatives: genomic and breeding resources’. (Ed. C Kole) pp. 153–206. Springer: Heidelberg, Germany

  • Wu Q, Li C, Ke L, Jiao C, Jiang J, Sun X, Li F, Wang C (2011) A high-efficiency, two-dimensional gel electrophoresis platform for mature leaves of grass pea (Lathyrus sativus L.). Acta Physiologiae Plantarum 33:2387

    Article  CAS  Google Scholar 

  • Yadav U, Singh N, Kaur A, Thakur S (2018) Physico-chemical, hydration, cooking, textural and pasting properties of different adzuki bean (Vigna angularis) accessions. J Food Sci Technol 55(2):802–810. https://doi.org/10.1007/s13197-017-2994-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagoub A, Abdalla AA (2007) Effect of domestic processing methods on chemical composition, in vitro digestibility of protein and starch and functional properties of bambara groundnut (Voandzeia subterranea) seed. Res J Agric Biol Sci 3:24–34

    CAS  Google Scholar 

  • Yamada T, Hattori K, Ishimoto M (2001) Purification and characterisation of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry 58(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Lin R, Renshaw D, Li C, Adhikari K, Thomas G, Buirchell B, Sweetingham M, Yan G (2010) Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.). Mol Breed 25:239–249. https://doi.org/10.1007/s11032-009-9325-4

    Article  CAS  Google Scholar 

  • Yang H, Tao Y, Zheng Z, Li C, Sweetingham M, Howieson J (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genom 13:318. https://doi.org/10.1186/1471-2164-13-318

    Article  CAS  Google Scholar 

  • Yang K, Tianb Z, Chen C, Luo L, Zhao B, Wang Z, Yu L, Li Y, Sun Y, Li W, Chen Y, Li Y, Zhang Y, Ai D, Zhao J, Shang C, Ma Y, Wu B, Wang M, Gao L, Sun D, Zhang P, Guo F, Wang W, Li Y, Wang J, Varshney RK, Wang J, Ling H-Q, Wan P (2015) Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. PNAS 112(43):13213–13218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao LM, Wang B, Cheng LJ, Wu TL (2013) Identification of key drought stress-related genes in the hyacinth bean. PLoS ONE 8:e58108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Cheng XZ, Wang LX, Wang SH, Ren G (2012) Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vignaumbellata L.) in China. Int J Mol Sci 13(3):2707–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Cheng X, Wang L, Wang S, Ren G (2011) Biological potential of sixteen legumes in China. Int J Mol Sci 12:7048–7058. https://doi.org/10.3390/ijms12107048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin JK, Nizar MA, Rajkumar S, Verma M, Verma N, Pandey S, Tiwari SK, Radhamani J (2014) Existence of alternate defense mechanisms for combating moisture stress in horse gram [Macrotyloma uniflorum (Lam.) Verdc.]. Legume Res Int J 37(2):145–154

    Article  Google Scholar 

  • Yasin JK (2018) Genome wide SNP identification from Cajanus cajan. https://www.ebi.ac.uk/eva/?eva-study=PRJEB27956.

  • Yasin JK (2018b) High density SSR and SNP saturated physical maps of Vigna radiata. https://legumeinfo.org/genomes/gbrowse/Vr1.0

  • Yasin JK, Mishra BK, Pillai MA, Verma N, Wani SH, Elansary HO, El-Ansary DO, Pandey PS, Chinnusamy V (2020) Genome wide in-silico miRNA and target network prediction from stress responsive horsegram (Macrotyloma uniflorum) accessions. Sci Rep 10:17203. https://doi.org/10.1038/s41598-020-73140-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin JK, Mishra BK, Pillai MA, Chinnusamy V (2021) Physical map of lncRNAs and lincRNAs linked with stress responsive miRs and genes network of pigeonpea (Cajanus cajan L). J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-021-00674-0

    Article  Google Scholar 

  • Yousif AM, Deeth HC, Caffin NA, Lisle AT (2002) Effect of storage time and conditions on the hardness and cooking quality of adzuki (Vigna angularis). Lebensmittel-Wissenschaft Technologie 35:338–343

    Article  CAS  Google Scholar 

  • Yousif AM, Kato J, Deeth HC (2007) Effect of storage on the biochemical structure and processing quality of adzuki bean (Vigna angularis). Food Rev Intl 23(1):1–33. https://doi.org/10.1080/87559120600865172

    Article  CAS  Google Scholar 

  • Zeven AC, de Wet JMJ (1982) Dictionary of cultivated plants and their regions of diversity. Centre for Agricultural Publication and Documentation, Wageningen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (SKC, ELD, SHW), Initial draft (SKC, ELD, IB, ALJ, AR, KS), Figures, tables and editing (JKY, SSB, BG, AK, SM, KS) Critical review and finalization (SHW, JKY, KS).

Corresponding author

Correspondence to Shabir Hussain Wani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised. In this article, the author names Kajal Samantara and Jeshima Khan Yasin were incorrectly published and they are corrected now.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chongtham, S.K., Devi, E.L., Samantara, K. et al. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. Planta 256, 24 (2022). https://doi.org/10.1007/s00425-022-03923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03923-1

Keywords

Navigation