Skip to main content
Log in

Expansion of the Ago gene family in the teleost clade

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

AGO proteins are universal effectors of eukaryotic small RNA-directed regulatory pathways. In this study, we used a comparative genomics approach to explore the AGO sub-family in the teleost clade. We identified five Ago homologues in teleost genomes, one more than encoded in other vertebrate clades. The additional teleost homologue was preserved most likely due to the differential retention of regulatory elements following the fish-specific genome duplication event that occurred approximately 350 million years ago. Analysis of all five Ago genomic loci in teleosts revealed that orthologues contain specific, conserved sequence elements in non-coding regions indicating that the teleost Ago paralogues are differentially regulated. This was supported by qRT-PCR analysis that showed differential expression of the zebrafish homologues across development and between adult tissues indicating stage and tissue-specific function of individual AGO proteins. Multiple sequence alignments showed not only that all teleost homologues possess critical residues for AGO function, but also that teleost homologues contain multiple orthologue-specific features, indicative of structural diversification. Notably, these are retained throughout the vertebrate lineage arguing these may be important for orthologue-specific functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764

    Article  PubMed  CAS  Google Scholar 

  • Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H, Siomi MC (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 105(23):7964–7969

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  PubMed  CAS  Google Scholar 

  • Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated Argonaute protein complexes. RNA Biol 4(2):76–84

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Hannon GJ (2004) RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11:214–218

    Article  PubMed  CAS  Google Scholar 

  • Catchen JM, Conery JS, Postlethwait JH (2009) Automated identification of conserved synteny after whole-genome duplication. Genome Res 19(8):1497–1505

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Casas-Mollano J (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896

    Article  PubMed  CAS  Google Scholar 

  • Cheloufi S, Santos COD, Chong MMW, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–590

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ (2010) A Novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698

    Article  PubMed  CAS  Google Scholar 

  • Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426–427

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(suppl 2):W273–W279

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579(26):5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Hartig JV, Tomari Y, Forstemann K (2007) piRNAs—the ancient hunters of genome invaders. Genes Dev 21(14):1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Hock J, Meister G (2008) The Argonaute protein family. Genome Biol 9(2):210

    Article  PubMed  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, S-i H, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447(7145):714–719

    Article  PubMed  CAS  Google Scholar 

  • Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19(8):1404–1418

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392(6679):917–920

    Article  PubMed  CAS  Google Scholar 

  • Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Searle SMJ, Harris N, Gibson M, Iyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smith CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME (2002) Apollo: a sequence annotation editor. Genome Biol 3(12):research0082.0081–research0082.0014

    Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song J-J, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19(23):2837–2848

    Article  PubMed  CAS  Google Scholar 

  • Murphy D, Dancis B, Brown J (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol 8(1):92

    Article  PubMed  Google Scholar 

  • O’Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129(1):37–44

    Article  PubMed  Google Scholar 

  • O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, Miska EA, Tarakhovsky A (2007) A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 21(16):1999–2004

    Article  PubMed  Google Scholar 

  • Parker J (2010) How to slice: snapshots of Argonaute in action. Silence 1(1):3

    Article  PubMed  Google Scholar 

  • Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait J, Amores A, Cresko W, Singer A, Yan Y-L (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20(10):481–490

    Article  PubMed  CAS  Google Scholar 

  • Rand TA, Ginalski K, Grishin NV, Wang X (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA 101:14385–14389

    Article  PubMed  CAS  Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the Argonaute family in the human genome. Genomics 82:323–330

    Article  PubMed  CAS  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23(10):578–587

    Article  PubMed  Google Scholar 

  • Su H, Trombly MI, Chen J, Wang X (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23(3):304–317

    Article  PubMed  CAS  Google Scholar 

  • Svingen T, Spiller CM, Kashimada K, Harley VR, Koopman P (2009) Identification of suitable normalizing genes for quantitative real-time RT-PCR analysis of gene expression in fetal mouse gonads. Sex Dev 3(4):194–204

    Article  PubMed  CAS  Google Scholar 

  • Tolia NH, Joshua-Tor L (2007) Slicer and the Argonautes. Nat Chem Biol 3(1):36–43

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2008) Importance of translation and nonnucleolytic Ago proteins for on-target RNA interference. Curr Biol 18(17):1327–1332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christine Neyt for technical assistance. We are grateful for grant support by the National Health and Medical Research Council of Australia (NHMRC grant number 631460) and the Australian Research Council (ARC grant number DP0879913). D.W. is a CDA Fellow of the National Health and Medical Research Council of Australia (NHMRC grant number 519737). This research was supported by the Invasive Animal Cooperative Research Centre and the Australian Zebrafish Phenomics Facility (NHMRC Grant Number 455871). I.B. was supported by a Feodor Lynen Postdoctoral Fellowship of the Alexander von Humboldt Foundation (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Wilhelm.

Additional information

Communicated by M. Hammerschmidt

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 96 kb)

Online Resource 2

(DOC 37.5 kb)

Online Resource 3

(DOC 64.5 kb)

Online Resource 4

(DOC 465 kb)

Online Resource 5

(DOC 618 kb)

Online Resource 6

(DOC 1.62 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFarlane, L., Svingen, T., Braasch, I. et al. Expansion of the Ago gene family in the teleost clade. Dev Genes Evol 221, 95–104 (2011). https://doi.org/10.1007/s00427-011-0363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-011-0363-7

Keywords

Navigation