Skip to main content
Log in

Structural covariance of the neostriatum with regional gray matter volumes

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The caudate and putamen nuclei have been traditionally divided into dorsal and ventral territories based on their segregated patterns of functional and anatomical connectivity with distributed cortical regions. Activity-dependent structural plasticity may potentially lead to the development of regional volume correlations, or structural covariance, between the different components of each cortico-striatal circuit. Here, we studied the whole-brain structural covariance patterns of four neostriatal regions belonging to distinct cortico-striatal circuits. We also assessed the potential modulating influence of laterality, age and gender. T1-weighted three-dimensional magnetic resonance images were obtained from ninety healthy participants (50 females). Following data pre-processing, the mean signal value per hemisphere was calculated for the ‘seed’ regions of interest, located in the dorsal and ventral caudate and the dorsal–caudal and ventral–rostral putamen. Statistical parametric mapping was used to estimate whole-brain voxel-wise structural covariance patterns for each striatal region, controlling for the shared anatomical variance between regions in order to obtain maximally specific structural covariance patterns. As predicted, segregated covariance patterns were observed. Age was found to be a relevant modulator of the covariance patterns of the right caudate regions, while laterality effects were observed for the dorsal–caudal putamen. Gender effects were only observed via an interaction with age. The different patterns of structural covariance are discussed in detail, as well as their similarities with the functional and anatomical connectivity patterns reported for the same striatal regions in other studies. Finally, the potential mechanisms underpinning the phenomenon of volume correlations between distant cortico-striatal structures are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358

    Article  PubMed  Google Scholar 

  • Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868

    PubMed  CAS  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  • Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571

    Article  PubMed  CAS  Google Scholar 

  • Bi G, Poo M (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401:792–796

    Article  PubMed  CAS  Google Scholar 

  • Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270

    Article  PubMed  Google Scholar 

  • Brett MA, Anton JL, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox. Neuroimage 16:497 (abstract)

    Google Scholar 

  • Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60:287–305

    Article  PubMed  Google Scholar 

  • Cardoner N, Soriano-Mas C, Pujol J, Alonso P, Harrison BJ, Deus J, Hernández-Ribas R, Menchón JM, Vallejo J (2007) Brain structural correlates of depressive comorbidity in obsessive-compulsive disorder. Neuroimage 38:413–421

    Article  PubMed  Google Scholar 

  • Caviness VS Jr, Lange NT, Makris N, Herbert MR, Kennedy DN (1999) MRI-based brain volumetrics: emergence of a developmental brain science. Brain Dev 21:289–295

    Article  PubMed  Google Scholar 

  • Cohen MX, Lombardo MV, Blumenfeld RS (2008) Covariance-based subdivision of the human striatum using T1-weighted MRI. Eur J Neurosci 27:1534–1546

    Article  PubMed  Google Scholar 

  • Colibazzi T, Zhu H, Bansal R, Schultz RT, Wang Z, Peterson BS (2008) Latent volumetric structure of the human brain: exploratory factor analysis and structural equation modeling of gray matter volumes in healthy children and adults. Hum Brain Mapp 29:1302–1312

    Article  PubMed  Google Scholar 

  • Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59

    Article  PubMed  Google Scholar 

  • Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533

    Article  PubMed  Google Scholar 

  • Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747

    Article  PubMed  Google Scholar 

  • Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, Lord C, Castellanos FX, Milham MP (2011) Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 69:847–856

    Article  PubMed  Google Scholar 

  • Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312

    Article  PubMed  CAS  Google Scholar 

  • Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL, Taylor SF (2011) Developmental alterations of frontal–striatal–thalamic connectivity in obsessive–compulsive disorder. J Am Acad Child Adolesc Psychiatry 50:938–948.e3

    Article  PubMed  Google Scholar 

  • Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560

    Article  PubMed  CAS  Google Scholar 

  • Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29:15684–15693

    Article  PubMed  CAS  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  PubMed  CAS  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74

    Article  PubMed  Google Scholar 

  • Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, Deus J, Alonso P, Yücel M, Pantelis C, Menchon JM, Cardoner N (2009) Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry 66:1189–1200

    Article  PubMed  Google Scholar 

  • Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  PubMed  CAS  Google Scholar 

  • Kaspárek T, Marecek R, Schwarz D, Prikryl R, Vanícek J, Mikl M, Cesková E (2010) Source-based morphometry of gray matter volume in men with first-episode schizophrenia. Hum Brain Mapp 31:300–310

    PubMed  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K (2009) l-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29:7364–7378

    Article  PubMed  CAS  Google Scholar 

  • Kennedy DN, Lange N, Makris N, Bates J, Meyer J, Caviness VS Jr (1998) Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex 8:372–384

    Article  PubMed  CAS  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691

    PubMed  Google Scholar 

  • Kolb B, Gorny G, Söderpalm AH, Robinson TE (2003) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153

    Article  PubMed  CAS  Google Scholar 

  • Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356

    Article  PubMed  CAS  Google Scholar 

  • Kwak Y, Peltier S, Bohnen NI, Müller ML, Dayalu P, Seidler RD (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn Sci 2:379–388

    Article  PubMed  CAS  Google Scholar 

  • Lehéricy S, Ducros M, Van de Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim DS (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    Article  PubMed  Google Scholar 

  • Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evans AC (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31:993–1003

    Article  PubMed  Google Scholar 

  • May A, Gaser C (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 19:407–411

    Article  PubMed  Google Scholar 

  • McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20:3798–3813

    PubMed  CAS  Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132

    PubMed  CAS  Google Scholar 

  • Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A (2009) Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum Brain Mapp 30:1938–1946

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200

    Article  PubMed  CAS  Google Scholar 

  • Mitelman SA, Brickman AM, Shihabuddin L, Newmark R, Chu KW, Buchsbaum MS (2005a) Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann’s areas in schizophrenia. Schizophr Res 75:265–281

    Article  PubMed  Google Scholar 

  • Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L (2005b) Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage 27:753–770

    Article  PubMed  Google Scholar 

  • Mitelman SA, Shihabuddin L, Brickman AM, Buchsbaum MS (2005c) Cortical intercorrelations of temporal area volumes in schizophrenia. Schizophr Res 76:207–229

    Article  PubMed  Google Scholar 

  • Modinos G, Vercammen A, Mechelli A, Knegtering H, McGuire PK, Aleman A (2009) Structural covariance in the hallucinating brain: a voxel-based morphometry study. J Psychiatry Neurosci 34:465–469

    PubMed  Google Scholar 

  • Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(Suppl 5):V1–V15

    Article  PubMed  Google Scholar 

  • Neufeld J, Teuchert-Noodt G, Grafen K, Winter Y, Witte AV (2009) Synapse plasticity in motor, sensory, and limbo-prefrontal cortex areas as measured by degrading axon terminals in an environment model of gerbils (Meriones unguiculatus). Neural Plast 2009:281561

    Article  PubMed  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  PubMed  CAS  Google Scholar 

  • Pennartz CM, Berke JD, Graybiel AM, Ito R, Lansink CS, van der Meer M, Redish AD, Smith KS, Voorn P (2009) Corticostriatal Interactions during learning, memory processing, and decision making. J Neurosci 29:12831–12838

    Article  PubMed  CAS  Google Scholar 

  • Portas CM, Goldstein JM, Shenton ME, Hokama HH, Wible CG, Fischer I, Kikinis R, Donnino R, Jolesz FA, McCarley RW (1998) Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biol Psychiatry 43:649–659

    Article  PubMed  CAS  Google Scholar 

  • Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:1508–1521

    Article  PubMed  Google Scholar 

  • Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216

    Article  PubMed  Google Scholar 

  • Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75

    Article  PubMed  CAS  Google Scholar 

  • Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchón JM, Deus J, Vallejo J (2004) Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61:720–730

    Article  PubMed  Google Scholar 

  • Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689

    Article  PubMed  Google Scholar 

  • Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K (2011) Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry 26:463–469

    Article  PubMed  CAS  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  PubMed  CAS  Google Scholar 

  • Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887–893

    Article  PubMed  CAS  Google Scholar 

  • Witte AV, Savli M, Holik A, Kasper S, Lanzenberger R (2010) Regional sex differences in grey matter volume are associated with sex hormones in the young adult human brain. Neuroimage 49:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Wright IC, Sharma T, Ellison ZR, McGuire PK, Friston KJ, Brammer MJ, Murray RM, Bullmore ET (1999) Supra-regional brain systems and the neuropathology of schizophrenia. Cereb Cortex 9:366–378

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD (2009) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30:711–724

    Article  PubMed  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, Chen ZJ, Evans A, Zang Y, He Y (2010) Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21:449–458

    Article  PubMed  Google Scholar 

  • Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107:18191–18196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Carlos III Health Institute (PI09/01331 and CP10/00604) and by the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR; 2009SGR1554). Dr. Soriano-Mas is funded by a Miguel Servet contract from the Carlos III Health Institute (CP10/00604). Dr. Harrison is supported by a National Health and Medical Research Council of Australia (NHMRC) Clinical Career Development Award (I.D. 628509). We thank Mr. Gerald Fannon for revising the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Soriano-Mas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano-Mas, C., Harrison, B.J., Pujol, J. et al. Structural covariance of the neostriatum with regional gray matter volumes. Brain Struct Funct 218, 697–709 (2013). https://doi.org/10.1007/s00429-012-0422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0422-5

Keywords

Navigation