Skip to main content

Advertisement

Log in

Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam MN, Szymusiak R, Gong H, King J, McGinty D (1999) Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol 521(Pt 3):679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigoni E, Chamberlin NL, Saper CB, McCarley RW (2006) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140(2):403–413. doi:10.1016/j.neuroscience.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E, Mochizuki T, Scammell TE (2010) Activation of the basal forebrain by the orexin/hypocretin neurons. Acta Physiol (Oxf) 198(3):223–235. doi:10.1111/j.1748-1716.2009.02036.x

    Article  CAS  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep–wake regulation. Prog Neurobiol 73(6):379–396. doi:10.1016/j.pneurobio.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  • Ben Achour S, Pascual O (2012) Astrocyte-neuron communication: functional consequences. Neurochem Res 37(11):2464–2473. doi:10.1007/s11064-012-0807-0

    Article  CAS  PubMed  Google Scholar 

  • Berntson GG, Shafi R, Sarter M (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 16(12):2453–2461

    Article  CAS  PubMed  Google Scholar 

  • Bettica P, Squassante L, Zamuner S, Nucci G, Danker-Hopfe H, Ratti E (2012) The orexin antagonist SB-649868 promotes and maintains sleep in men with primary insomnia. Sleep 35(8):1097–1104. doi:10.5665/sleep.1996

    PubMed  PubMed Central  Google Scholar 

  • Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ (2006a) Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 26(31):8092–8100. doi:10.1523/JNEUROSCI.2181-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Centurion CA, Shiromani A, Winston E, Shiromani PJ (2006b) Effects of hypocretin-1 in 192-IgG-saporin-lesioned rats. Eur J Neurosci 24(7):2084–2088. doi:10.1111/j.1460-9568.2006.05074.x

    Article  PubMed  Google Scholar 

  • Blanco-Centurion C, Gerashchenko D, Shiromani PJ (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27(51):14041–14048. doi:10.1523/JNEUROSCI.3217-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, Mueller C, Nayler O, van Gerven J, de Haas SL, Hess P, Qiu C, Buchmann S, Scherz M, Weller T, Fischli W, Clozel M, Jenck F (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13(2):150–155. doi:10.1038/nm1544

    Article  CAS  PubMed  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  CAS  PubMed  Google Scholar 

  • Dang A, Garg A, Rataboli PV (2011) Role of zolpidem in the management of insomnia. CNS Neurosci Ther 17(5):387–397. doi:10.1111/j.1755-5949.2010.00158.x

    Article  CAS  PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95(1):322–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, Bonaventure P, Yun S, Li X, Lord B, Dvorak CA, Carruthers NI, Lovenberg TW (2009) Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther 330(1):142–151. doi:10.1124/jpet.109.152009

    Article  CAS  PubMed  Google Scholar 

  • Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M (2001) Orexins/hypocretins excite basal forebrain cholinergic neurons. Neuroscience 108(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Espana RA, Baldo BA, Kelley AE, Berridge CW (2001) Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106(4):699–715

    Article  CAS  PubMed  Google Scholar 

  • Espana RA, Reis KM, Valentino RJ, Berridge CW (2005) Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures. J Comp Neurol 481(2):160–178. doi:10.1002/cne.20369

    Article  PubMed  Google Scholar 

  • Fadel J, Pasumarthi R, Reznikov LR (2005) Stimulation of cortical acetylcholine release by orexin A. Neuroscience 130(2):541–547. doi:10.1016/j.neuroscience.2004.09.050

    Article  CAS  PubMed  Google Scholar 

  • Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956. doi:10.1002/cne.22559

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotter AL, Winrow CJ, Brunner J, Garson SL, Fox SV, Binns J, Harrell CM, Cui D, Yee KL, Stiteler M, Stevens J, Savitz A, Tannenbaum PL, Tye SJ, McDonald T, Yao L, Kuduk SD, Uslaner J, Coleman PJ, Renger JJ (2013) The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci 14:90. doi:10.1186/1471-2202-14-90

    Article  PubMed  PubMed Central  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355. doi:10.1146/annurev-physiol-021909-135843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219. doi:10.1016/j.neuron.2008.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani OK, Lee MG, Henny P, Jones BE (2009) Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 29(38):11828–11840. doi:10.1523/JNEUROSCI.1259-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawryluk JM, Ferrari LL, Keating SA, Arrigoni E (2012) Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons. J Neurophysiol 107(10):2769–2781. doi:10.1152/jn.00528.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henny P, Brischoux F, Mainville L, Stroh T, Jones BE (2010) Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus. Neuroscience 169(3):1150–1157. doi:10.1016/j.neuroscience.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasper HH, Tessier J (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172(3983):601–602

    Article  CAS  PubMed  Google Scholar 

  • John J, Ramanathan L, Siegel JM (2008) Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol Regul Integr Comp Physiol 295(6):R2041–R2049. doi:10.1152/ajpregu.90541.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R (2008) The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions. Neuroscience 157(1):238–253. doi:10.1016/j.neuroscience.2008.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116(2):260–272. doi:10.1111/j.1471-4159.2010.07100.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Junek A, Black MA, Semba K (2008) Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J Neurosci 28(2):491–504. doi:10.1523/JNEUROSCI.1585-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Koberstein R, Fischli W, Clozel M, Aissaoui H, Weller T (2005) Substituted 1,2,3,4-tetrahydroisoquinoline derivatives, WO 2005118548

  • Kodama T, Honda Y (1999) Acetylcholine and glutamate release during sleep-wakefulness in the pedunculopontine tegmental nucleus and norepinephrine changes regulated by nitric oxide. Psychiatry Clin Neurosci 53(2):109–111. doi:10.1046/j.1440-1819.1999.00543.x

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Lai YY, Siegel JM (1992) Enhancement of acetylcholine release during REM sleep in the caudomedial medulla as measured by in vivo microdialysis. Brain Res 580(1–2):348–350

    Article  CAS  PubMed  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81(6):891–899. doi:10.1002/jnr.20602

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Manfridi A, Brambilla D, Mancia M (2001) Sleep is differently modulated by basal forebrain GABA(A) and GABA(B) receptors. Am J Physiol Regul Integr Comp Physiol 281(1):R170–R175

    CAS  PubMed  Google Scholar 

  • Manns ID, Alonso A, Jones BE (2000a) Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20(24):9252–9263

    CAS  PubMed  Google Scholar 

  • Manns ID, Alonso A, Jones BE (2000b) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neuroscience 20:1505–1518

    CAS  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    Article  CAS  PubMed  Google Scholar 

  • Marrosu F, Portas C, Mascia MS, Casu MA, Fa M, Giagheddu M, Imperato A, Gessa GL (1995) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res 671(2):329–332

    Article  CAS  PubMed  Google Scholar 

  • Methippara MM, Alam MN, Szymusiak R, McGinty D (2000) Effects of lateral preoptic area application of orexin-A on sleep-wakefulness. NeuroReport 11(16):3423–3426

    Article  CAS  PubMed  Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2007) Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery. BMC Neurosci 8:15. doi:10.1186/1471-2202-8-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Morairty SR, Hedley L, Flores J, Martin R, Kilduff TS (2008) Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep 31(1):34–44

    PubMed  PubMed Central  Google Scholar 

  • Morairty SR, Revel FG, Malherbe P, Moreau JL, Valladao D, Wettstein JG, Kilduff TS, Borroni E (2012) Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS ONE 7(7):e39131. doi:10.1371/journal.pone.0039131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morairty S, Wilk AJ, Lincoln WU, Neylan TC, Kilduff TS (2014) The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats. Front Neurosci 8:3. doi:10.3389/fnins.2014.00003

    Article  PubMed  PubMed Central  Google Scholar 

  • Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ (2008) Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci 28(6):1191–1198. doi:10.1111/j.1460-9568.2008.06424.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitz D, Siegel JM (1996) GABA release in posterior hypothalamus across sleep-wake cycle. Am J Physiol 271(6 Pt 2):R1707–R1712

    CAS  PubMed  Google Scholar 

  • Nitz D, Siegel J (1997a) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273(1 Pt 2):R451–R455

    CAS  PubMed  Google Scholar 

  • Nitz D, Siegel JM (1997b) GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78(3):795–801

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Sydney

    Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T (1999) Adenosine in sleep and wakefulness. Ann Med 31(2):125–129

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263(5147):689–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosin DL, Weston MC, Sevigny CP, Stornetta RL, Guyenet PG (2003) Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol 465(4):593–603. doi:10.1002/cne.10860

    Article  CAS  PubMed  Google Scholar 

  • Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13(3):627–643

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Mieda M (2011) Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 32(8):451–462. doi:10.1016/j.tips.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Matsumura H, Suzuki F, Hayaishi O (1996) Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci USA 93(12):5980–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh S, Matsumura H, Hayaishi O (1998) Involvement of adenosine A2A receptor in sleep promotion. Eur J Pharmacol 351(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Scharf MT, Naidoo N, Zimmerman JE, Pack AI (2008) The energy hypothesis of sleep revisited. Prog Neurobiol 86(3):264–280. doi:10.1016/j.pneurobio.2008.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7(3):697–704. doi:10.1016/j.celrep.2014.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims RE, Wu HH, Dale N (2013) Sleep–wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study. PLoS ONE 8(1):e53814. doi:10.1371/journal.pone.0053814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115(2):183–204

    Article  CAS  PubMed  Google Scholar 

  • Szymusiak R, Alam N, McGinty D (2000) Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res 115(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474

    Article  CAS  PubMed  Google Scholar 

  • Timmerman W, Westerink BH (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27(3):242–261. doi:10.1002/(SICI)1098-2396(199711)27:3<242:AID-SYN9>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  • Uslaner JM, Tye SJ, Eddins DM, Wang X, Fox SV, Savitz AT, Binns J, Cannon CE, Garson SL, Yao L, Hodgson R, Stevens J, Bowlby MR, Tannenbaum PL, Brunner J, McDonald TP, Gotter AL, Kuduk SD, Coleman PJ, Winrow CJ, Renger JJ (2013) Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition. Sci Transl Med 5(179):179ra144. doi:10.1126/scitranslmed.3005213

    Article  Google Scholar 

  • van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90(2):135–147. doi:10.1016/j.pbb.2007.09.004

    Article  PubMed  Google Scholar 

  • Vanini G, Lydic R, Baghdoyan HA (2012) GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep 35(10):1325–1334. doi:10.5665/sleep.2106

    PubMed  PubMed Central  Google Scholar 

  • Vazquez J, Baghdoyan HA (2001) Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am J Physiol Regul Integr Comp Physiol 280(2):R598–R601

    CAS  PubMed  Google Scholar 

  • Vazquez J, Baghdoyan HA (2003) Muscarinic and GABAA receptors modulate acetylcholine release in feline basal forebrain. Eur J Neurosci 17(2):249–259

    Article  PubMed  Google Scholar 

  • Vazquez J, Lydic R, Baghdoyan HA (2002) The nitric oxide synthase inhibitor NG-Nitro-l-arginine increases basal forebrain acetylcholine release during sleep and wakefulness. J Neurosci 22(13):5597–5605

    CAS  PubMed  Google Scholar 

  • Wigren HK, Schepens M, Matto V, Stenberg D, Porkka-Heiskanen T (2007) Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience 147(3):811–823. doi:10.1016/j.neuroscience.2007.04.046

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG, Oeltmann TN, Lappi DA (1991) Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res 562(1):149–153

    Article  CAS  PubMed  Google Scholar 

  • Winrow CJ, Gotter AL, Cox CD, Doran SM, Tannenbaum PL, Breslin MJ, Garson SL, Fox SV, Harrell CM, Stevens J, Reiss DR, Cui D, Coleman PJ, Renger JJ (2011) Promotion of sleep by suvorexant-a novel dual orexin receptor antagonist. J Neurogenet 25(1–2):52–61. doi:10.3109/01677063.2011.566953

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Franciosi S, Brown RE (2013) Adenosine inhibits the excitatory synaptic inputs to Basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol 4:77. doi:10.3389/fneur.2013.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaborszky L, Duque A (2003) Sleep-wake mechanisms and basal forebrain circuitry. Front Biosci 8:d1146–d1169

    Article  CAS  PubMed  Google Scholar 

  • Zhang LN, Li ZJ, Tong L, Guo C, Niu JY, Hou WG, Dong HL (2012) Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg 115(4):789–796. doi:10.1213/ANE.0b013e3182645ea3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial interests. This research was supported by the U.S. Army Medical Research Acquisition Activity (USAMRAA) award number W81XWH-09-2-0081 to T.S.K. We thank Tsui-Ming Chen, Webster Lincoln, Helen Liu, Alan J. Wilk, and Dr. Lars Dittrich for technical assistance, Dr. Ling Jong for synthesis of almorexant, and Dr. Rhiannan Williams for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Kilduff.

Additional information

J. Vazquez-DeRose and M. D. Schwartz contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-DeRose, J., Schwartz, M.D., Nguyen, A.T. et al. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct 221, 923–940 (2016). https://doi.org/10.1007/s00429-014-0946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0946-y

Keywords

Navigation