Skip to main content

Advertisement

Log in

Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The accessory olfactory system controls social and sexual behaviours in mice, both of which are critical for their survival. Vomeronasal sensory neuron (VSN) axons form synapses with mitral cell dendrites in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor (VR) converge into multiple glomeruli within spatially conserved regions of the AOB. Here, we have examined the role of the cell adhesion molecule Kirrel2 in the formation of glomeruli within the AOB. We find that Kirrel2 expression is dispensable for early axonal guidance events, such as fasciculation of the vomeronasal tract and segregation of apical and basal VSN axons into the anterior and posterior regions of the AOB, but is necessary for glomeruli formation. Specific ablation of Kirrel2 expression in VSN axons results in the disorganization of the glomerular layer of the posterior AOB and in the formation of fewer and larger glomeruli. Furthermore, simultaneous ablation of Kirrel2 and Kirrel3 expression leads to a loss of morphologically identifiable glomeruli in the AOB, reduced excitatory synapse numbers, and larger presynaptic terminals. Taken together, our results demonstrate that Kirrel2 and Kirrel3 are essential for the formation of glomeruli and suggest they contribute to synaptogenesis in the AOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belluscio L, Koentges G, Axel R, Dulac C (1999) A map of pheromone receptor activation in the mammalian brain. Cell 97:209–220

    Article  CAS  PubMed  Google Scholar 

  • Boschat C, Pélofi C, Randin O, Roppolo D, Lüscher C, Broillet MC, Rodriguez I (2002) Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 5:1261–1262

    Article  CAS  PubMed  Google Scholar 

  • Brignall AC, Cloutier J-F (2015) Neural map formation and sensory coding in the vomeronasal system. Cell Mol Life Sci 72:4697–4709

    Article  CAS  PubMed  Google Scholar 

  • Chamero P, Katsoulidou V, Hendrix P, Bufe B, Roberts R, Matsunami H, Abramowitz J, Birnbaumer L, Zufall F, Leinders-Zufall T (2011) G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci USA 108:12898–12903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JH, Prince JE, Cutforth T, Cloutier JF (2011) The pattern of glomerular map formation defines responsiveness to aversive odorants in mice. J Neurosci 31:7920–7926

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Kam JW, Cloutier JF (2012) Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb. Dev Biol 371:269–279

    Article  CAS  PubMed  Google Scholar 

  • Cloutier JF, Giger RJ, Koentges G, Dulac C, Kolodkin AL, Ginty DD (2002) Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 33:877–892

    Article  CAS  PubMed  Google Scholar 

  • Cloutier JF, Sahay A, Chang EC, Tessier-Lavigne M, Dulac C, Kolodkin AL, Ginty DD (2004) Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections. J Neurosci 24:9087–9096

    Article  CAS  PubMed  Google Scholar 

  • Del Punta K, Puche A, Adams NC, Rodriguez I, Mombaerts P (2002) A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35:1057–1066

    Article  PubMed  Google Scholar 

  • Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, Mathur BN, Turner CA, Geske R, Montgomery CA, Starbuck M, Brandt M, Gupta A, Ramirez-Solis R, Zambrowicz BP, Powell DR (2001) Protreinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol 21:4829–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Wagner S (2006) Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 40:449–467

    Article  CAS  PubMed  Google Scholar 

  • Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R (2004) Mice cloned from olfactory sensory neurons. Nature 428:44–49

    Article  CAS  PubMed  Google Scholar 

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122

    Article  CAS  PubMed  Google Scholar 

  • Hammen GF, Turaga D, Holy TE, Meeks JP (2014) Functional organization of glomerular maps in the mouse accessory olfactory bulb. Nat Neurosci 17:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773

    Article  CAS  PubMed  Google Scholar 

  • Jia C, Halpern M (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha2) and G(o alpha) and segregated projections to the accessory olfactory bulb. Brain Res 719:117–128

    Article  CAS  PubMed  Google Scholar 

  • Juhila J, Lassila M, Roozendaal R, Lehtonen E, Messing M, Langer B, Kerjaschki D, Verbeek JS, Holthofer H (2010) Inducible nephrin transgene expression in podocytes rescues nephrin-deficient mice from perinatal death. Am J Pathol 176:51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll B, Zarbalis K, Wurst W, Drescher U (2001) A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128:895–906

    CAS  PubMed  Google Scholar 

  • Knoll B, Schmidt H, Andrews W, Guthrie S, Pini A, Sundaresan V, Drescher U (2003) On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion. Development 130:5073–5082

    Article  PubMed  Google Scholar 

  • Li M, Armelloni S, Ikehata M, Corbelli A, Pesaresi M, Calvaresi N, Giardino L, Mattinzoli D, Nisticò F, Andreoni S, Puliti A, Ravazzolo R, Forloni G, Messa P, Rastaldi MP (2011) Nephrin expression in adult rodent nervous system and its interaction with glutamate receptors. J Pathol 225:118–128

    Article  CAS  PubMed  Google Scholar 

  • Martin EA, Muralidhar S, Wang Z, Cervantes DC, Basu R, Taylor MR, Hunter J, Cutforth T, Wilke SA, Ghosh A, Williams ME (2015) The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. Elife 4:e09395. doi:10.7554/eLife.09395

    Article  PubMed  PubMed Central  Google Scholar 

  • Martini S, Silvotti L, Shirazi A, Ryba NJ, Tirindelli R (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21:843–848

    CAS  PubMed  Google Scholar 

  • Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  CAS  PubMed  Google Scholar 

  • Morikawa Y, Komori T, Hisaoka T, Ueno H, Kitamura T, Senba E (2007) Expression of mKirre in the developing sensory pathways: its close apposition to nephrin-expressing cells. Neurosci 150:880–886

    Article  CAS  Google Scholar 

  • Pantages E, Dulac C (2000) A novel family of candidate pheromone receptors in mammals. Neuron 28:835–845

    Article  CAS  PubMed  Google Scholar 

  • Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular pedocyte. Physiol Rev 83:253–307

    Article  CAS  PubMed  Google Scholar 

  • Prince JE, Cho JH, Dumontier E, Andrews W, Cutforth T, Tessier-Lavigne M, Parnavelas J, Cloutier JF (2009) Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb. J Neurosci 29:14211–14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince JEA, Brignall AK, Cutforth T, Shen K, Cloutier J-F (2013) Kirrel-3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 140:2398–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putaala H, Soininen R, Kilpeläinen P, Wartiovaara J, Tryggvason K (2001) The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet 10:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Del Punta K, Rothman A, Ishii T, Mombaerts P (2002) Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci 5:134–140

    Article  CAS  PubMed  Google Scholar 

  • Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379

    Article  CAS  PubMed  Google Scholar 

  • Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H (2006) A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127:1057–1069

    Article  CAS  PubMed  Google Scholar 

  • Shen K, Bargmann CI (2003) The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112:619–630

    Article  CAS  PubMed  Google Scholar 

  • Shen K, Fetter RD, Bargmann CI (2004) Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116:869–881

    Article  CAS  PubMed  Google Scholar 

  • Stowers L, Logan DW (2010) Olfactory mechanisms of stereotyped behavior: on the scent of specialized circuits. Curr Opin Neurobiol 20:274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walz A, Rodriguez I, Mombaerts P (2002) Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci 22:4025–4035

    CAS  PubMed  Google Scholar 

  • Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063–4072

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Leinders-Zufall T (2007) Mammalian pheromone sensing. Curr Opin Neurobiol 17:483–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Cloutier lab for helpful discussion and technical advice. We thank Drs. Louis Hermo and Thomas Stroh, as well as the Facility for Electron Microscopy Research of McGill University for invaluable help and advice with synapse analyses. We thank Dr. David Ginty for Kirrel cDNAs and Mitra Cowan for the generation of Kirrel2 mouse models. This work was supported by the Canadian Institutes for Health Research and the Natural Sciences and Engineering Council of Canada (J.-F. C.). A. C. B held a studentship from the Natural Sciences and Engineering Council of Canada. J. E. A. Prince held studentships from the Fonds Québécois pour la Recherche sur la Nature et les Technologies and the Faculty of Medicine at McGill University. Reesha Raja is a recipient of a Vanier Scholarship from the Canadian Institutes of Health Research. J.-F. C. is a FRQS Chercheur Sénior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Cloutier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brignall, A.C., Raja, R., Phen, A. et al. Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb. Brain Struct Funct 223, 307–319 (2018). https://doi.org/10.1007/s00429-017-1485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1485-0

Keywords

Navigation