Skip to main content
Log in

TLR4, IL10RA, and NOD2 mutation in paediatric Crohn’s disease patients: an association with Mycobacterium avium subspecies paratuberculosis and TLR4 and IL10RA expression

  • Original Paper
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Mycobacterium avium subspecies paratuberculosis (MAP) has been implicated in the pathogenesis of Crohn’s disease (CD). The role of CD susceptibility genes in association with these microbes is not known. Sixty-two early onset paediatric CD patients and 46 controls with known MAP status were analysed for an association with 34 single nucleotide polymorphisms (SNPs) from 18 CD susceptibility genes. Functional studies on peripheral blood mononuclear cells (PBMCs) were conducted on 17 CD patients with known CD mutations to assess IL-6, IL-10, and TNF-α expression upon stimulation with MAP precipitated protein derivative (PPD) and lipopolysaccharide (LPS). In addition, surface expression of IL10R and TLR4 on resting B cells, NK cells, T cells, and monocytes was assessed. A mutation in TLR4 (rs4986790) and IL10RA (rs22291130) was significantly associated with MAP-positive CD patients compared to MAP-negative CD patients (27.6 vs. 6.1 %, p = 0.021, and 62.1 vs. 33.3 %, p = 0.024, respectively). PPD and LPS significantly increased IL-6, IL-10, and TNF-α production in PBMCs. IL-10 and TNF-α production were significantly lower in a subgroup of CD patients (5/12) with a known NOD2 mutation. Receptor for IL-10 was significantly higher expressed on NK cells (CD56low) and on NK T cells harbouring a NOD2 mutations compared to wildtype cells (p = 0.031 and 0.005, respectively). TLR4 was significantly higher expressed on NK cells (CD56high) harbouring a NOD2 mutations compared to wildtype cells (p = 0.038).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt C, Stallmach A (2005) Etiology and pathogenesis of inflammatory bowel disease. Minerva Gastroenterol Dietol 51:127–145

    PubMed  CAS  Google Scholar 

  2. Rankin JD (1961) Confirmation of a calculated ID50 of Mycobacterium johnei for the experimental production of Johne’s disease in cattle. J Pathol Bacteriol 81:539

    Article  PubMed  CAS  Google Scholar 

  3. Vary PH, Andersen PR, Green E, Hermon-Taylor J, McFadden JJ (1990) Use of highly specific DNA probes and the polymerase chain reaction to detect Mycobacterium paratuberculosis in Johne’s disease. J Clin Microbiol 28:933–937

    PubMed  CAS  Google Scholar 

  4. Chacon O, Bermudez LE, Barletta RG (2004) Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu Rev Microbiol 58:329–363

    Article  PubMed  CAS  Google Scholar 

  5. Quirke P (2001) Antagonist. Mycobacterium avium subspecies paratuberculosis is a cause of Crohn’s disease. Gut 49:757–760

    Article  PubMed  CAS  Google Scholar 

  6. Smith EM, Swarnavel S, Ritchie JM, Wang D, Haugen TH, Turek LP (2007) Prevalence of human papillomavirus in the oral cavity/oropharynx in a large population of children and adolescents. Pediatr Infect Dis J 26:836–840

    Article  PubMed  Google Scholar 

  7. Chiodini RJ, Chamberlin WM, Sarosiek J, McCallum RW (2012) Crohn’s disease and the mycobacterioses: a quarter century later. Causation or simple association? Crit Rev Microbiol 38:52–93

    Article  PubMed  Google Scholar 

  8. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  PubMed  Google Scholar 

  9. Feller M, Huwiler K, Stephan R et al (2007) Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis 7:607–613

    Article  PubMed  Google Scholar 

  10. Naser SA, Ghobrial G, Romero C, Valentine JF (2004) Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet 364:1039–1044

    Article  PubMed  Google Scholar 

  11. Bull TJ, McMinn EJ, Sidi-Boumedine K et al (2003) Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn’s disease. J Clin Microbiol 41:2915–2923

    Article  PubMed  CAS  Google Scholar 

  12. Kirkwood CD, Wagner J, Boniface K et al (2009) Mycobacterium avium subspecies paratuberculosis in children with early-onset Crohn’s disease. Inflamm Bowel Dis 15:1643–1655

    Article  PubMed  Google Scholar 

  13. Wagner J, Sim W, Bishop RF, Catto-Smith AG, Cameron DJ, Kirkwood CD (2011) Mycobacterium avium subspecies paratuberculosis in children with early-onset Crohn’s disease: a longitudinal follow-up study. Inflamm Bowel Dis 17:1825–1826

    Article  PubMed  Google Scholar 

  14. Divangahi M, Mostowy S, Coulombe F et al (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181:7157–7165

    PubMed  CAS  Google Scholar 

  15. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  16. Lien E, Sellati TJ, Yoshimura A et al (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33425

    Article  PubMed  CAS  Google Scholar 

  17. Song Y, Shi Y, Ao LH, Harken AH, Meng XZ (2003) TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-alpha and IL-1beta. World J Gastroenterol 9:1799–1803

    PubMed  CAS  Google Scholar 

  18. Browning BL, Huebner C, Petermann I et al (2007) Has toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? Association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol 102:2504–2512

    Article  PubMed  CAS  Google Scholar 

  19. Ferwerda G, Girardin SE, Kullberg BJ et al (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1:279–285

    Article  PubMed  CAS  Google Scholar 

  20. Ferwerda G, Kullberg BJ, de Jong DJ et al (2007) Mycobacterium paratuberculosis is recognized by toll-like receptors and NOD2. J Leukoc Biol 82:1011–1018

    Article  PubMed  CAS  Google Scholar 

  21. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  22. Ding Y, Qin L, Zamarin D et al (2001) Differential IL-10R1 expression plays a critical role in IL-10-mediated immune regulation. J Immunol 167:6884–6892

    PubMed  CAS  Google Scholar 

  23. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  PubMed  CAS  Google Scholar 

  24. Kozaiwa K, Sugawara K, Smith MF Jr et al (2003) Identification of a quantitative trait locus for ileitis in a spontaneous mouse model of Crohn’s disease: SAMP1/YitFc. Gastroenterology 125:477–490

    Article  PubMed  Google Scholar 

  25. Tanaka Y, Nakashima H, Otsuka T et al (1997) Detection of polymorphisms within the human IL10 receptor cDNA gene sequence by RT-PCR RFLP. Immunogenetics 46:439–441

    Article  PubMed  CAS  Google Scholar 

  26. Gasche C, Grundtner P, Zwirn P et al (2003) Novel variants of the IL-10 receptor 1 affect inhibition of monocyte TNF-alpha production. J Immunol 170(11):5578–5582

    Google Scholar 

  27. Wagner J, Sim WH, Ellis JA et al (2010) Interaction of Crohn’s disease susceptibility genes in an Australian paediatric cohort. PLoS ONE 5:e15376

    Article  PubMed  Google Scholar 

  28. Wynne JW, Shiell BJ, Colgrave ML, Vaughan JA, Beddome G, Michalski WP (2012) Production and proteomic characterisation of purified protein derivative from Mycobacterium avium subsp. paratuberculosis. Proteome Sci 10:22

    Article  PubMed  CAS  Google Scholar 

  29. Ronni T, Agarwal V, Haykinson M, Haberland ME, Cheng G, Smale ST (2003) Common interaction surfaces of the toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol Cell Biol 23:2543–2555

    Article  PubMed  CAS  Google Scholar 

  30. Bhide MR, Mucha R, Mikula I Jr et al (2009) Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection. BMC Genet 10:21

    Article  PubMed  Google Scholar 

  31. Najmi N, Kaur G, Sharma SK, Mehra NK (2010) Human Toll-like receptor 4 polymorphisms TLR4 Asp299Gly and Thr399Ile influence susceptibility and severity of pulmonary tuberculosis in the Asian Indian population. Tissue Antigens 76:102–109

    PubMed  CAS  Google Scholar 

  32. Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, van der Ven AJ (2007) The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21:1375–1377

    Article  PubMed  CAS  Google Scholar 

  33. Montes AH, Asensi V, Alvarez V et al (2006) The Toll-like receptor 4 (Asp299Gly) polymorphism is a risk factor for Gram-negative and haematogenous osteomyelitis. Clin Exp Immunol 143:404–413

    Article  PubMed  CAS  Google Scholar 

  34. Mucha R, Bhide MR, Chakurkar EB, Novak M, Mikula I Sr (2009) Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet Immunol Immunopathol 128:381–388

    Article  PubMed  CAS  Google Scholar 

  35. Bernstein CN, Blanchard JF, Rawsthorne P, Collins MT (2004) Population-based case control study of seroprevalence of Mycobacterium paratuberculosis in patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 42:1129–1135

    Article  PubMed  Google Scholar 

  36. Ruiz-Larranaga O, Garrido JM, Iriondo M et al (2010) Genetic association between bovine NOD2 polymorphisms and infection by Mycobacterium avium subsp. paratuberculosis in Holstein-Friesian cattle. Anim Genet 41:652–655

    Article  PubMed  CAS  Google Scholar 

  37. Divangahi M, Mostowy S, Coulombe F et al (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol (Baltimore, Md : 1950) 181:7157–7165

    CAS  Google Scholar 

  38. Pandey AK, Yang Y, Jiang Z et al (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500

    Article  PubMed  Google Scholar 

  39. Wahamaa H, Schierbeck H, Hreggvidsdottir HS et al (2011) High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthr Res Ther 13:R136

    Article  Google Scholar 

  40. Athie-Morales V, O’Connor GM, Gardiner CM (2008) Activation of human NK cells by the bacterial pathogen-associated molecular pattern muramyl dipeptide. J Immunol 180:4082–4089

    Google Scholar 

  41. Strober W, Kitani A, Fuss I et al (2008) The molecular basis of NOD2 susceptibility mutations in Crohn’s disease. Mucosal Immunol 1 (Suppl 1):S5–S9

  42. Kullberg BJ, Ferwerda G, de Jong DJ et al (2008) Crohn’s disease patients homozygous for the 3020insC NOD2 mutation have a defective NOD2/TLR4 cross-tolerance to intestinal stimuli. Immunology. 123(4):600–605

    Google Scholar 

  43. Biswas A, Petnicki-Ocwieja T, Kobayashi KS (2012) NOD2: a key regulator linking microbiota to intestinal mucosal immunity. J Mol Med (Berl) 90:15–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the children and their families for their participation in this study. This work was supported by research grants from the Murdoch Childrens Research Institute, The CASS Foundation, and The Lynne Quayle Charitable Trust, Equity Trustees LTD. Dr. C. Kirkwood is supported by an NHMRC CDA Fellowship (609347). This work was supported by the Victorian Government Operational Infrastructure Support Program.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Wagner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Supplementary material 2 (DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, J., Skinner, N.A., Catto-Smith, A.G. et al. TLR4, IL10RA, and NOD2 mutation in paediatric Crohn’s disease patients: an association with Mycobacterium avium subspecies paratuberculosis and TLR4 and IL10RA expression. Med Microbiol Immunol 202, 267–276 (2013). https://doi.org/10.1007/s00430-013-0290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-013-0290-5

Keywords

Navigation