Skip to main content

Advertisement

Log in

The anti-obesity drug orlistat reveals anti-viral activity

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kremers S, Reubsaet A, Martens M, Gerards S, Jonkers R, Candel M, de Weerdt I, de Vries N (2010) Systematic prevention of overweight and obesity in adults: a qualitative and quantitative literature analysis. Obes Rev 11(5):371–379

    Article  CAS  PubMed  Google Scholar 

  2. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 129(25):102–138

    Article  Google Scholar 

  3. Browne CD, Hindmarsh EJ, Smith JW (2006) Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J 20(12):2027–2035

    Article  CAS  PubMed  Google Scholar 

  4. Charakida M, Tousoulis D, Finer N (2013) Drug treatment of obesity in the cardiovascular patient. Curr Opin Cardiol 28(5):584–591

    Article  PubMed  Google Scholar 

  5. Siebenhofer A, Jeitler K, Horvath K, Berghold A, Siering U, Semlitsch T (2013) Long-term effects of weight-reducing drugs in hypertensive patients. Cochrane Database Syst Rev 3:CD007654

    PubMed  Google Scholar 

  6. Yanovski SZ, Yanovski JA (2014) Long-term drug treatment for obesity: a systematic and clinical review. JAMA 311(1):74–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64(6):2070–2075

    Article  CAS  PubMed  Google Scholar 

  8. Guinea R, Carrasco L (1990) Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J 9(6):2011–2016

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, Whitton JL (2010) Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol 84(23):12110–12124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Van Kuppeveld FJ, Hoenderop JG, Smeets RL, Willems PH, Dijkman HB, Galama JM, Melchers WJ (1997) Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16(12):3519–3532

    Article  PubMed Central  PubMed  Google Scholar 

  11. Limpens RW, van der Schaar HM, Kumar D, Koster AJ, Snijder EJ, van Kuppeveld FJ, Barcena M (2011) The transformation of enterovirus replication structures: a three-dimensional study of single- and double-membrane compartments. MBio 2(5):e00166-11

    Article  PubMed Central  PubMed  Google Scholar 

  12. Netherton CL, Wileman T (2011) Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol 1(5):381–387

    Article  CAS  PubMed  Google Scholar 

  13. Robinson SM, Tsueng G, Sin J, Mangale V, Rahawi S, McIntyre LL, Williams W, Kha N, Cruz C, Hancock BM, Nguyen DP, Sayen MR, Hilton BJ, Doran KS, Segall AM, Wolkowicz R, Cornell CT, Whitton JL, Gottlieb RA, Feuer R (2014) Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 10(4):e1004045

    Article  PubMed Central  PubMed  Google Scholar 

  14. Belov GA, Sztul E (2014) Rewiring of cellular membrane homeostasis by picornaviruses. J Virol 88(17):9478–9489

    Article  PubMed Central  PubMed  Google Scholar 

  15. Belov GA, Altan-Bonnet N, Kovtunovych G, Jackson CL, Lippincott-Schwartz J, Ehrenfeld E (2007) Hijacking components of the cellular secretory pathway for replication of poliovirus RNA. J Virol 81(2):558–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nchoutmboube JA, Viktorova EG, Scott AJ, Ford LA, Pei Z, Watkins PA, Ernst RK, Belov GA (2013) Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog 9(6):e1003401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tabor-Godwin JM, Tsueng G, Sayen MR, Gottlieb RA, Feuer R (2012) The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy 8(6):938–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360(15):1526–1538

    Article  CAS  PubMed  Google Scholar 

  19. Why HJ, Meany BT, Richardson PJ, Olsen EG, Bowles NE, Cunningham L, Freeke CA, Archard LC (1994) Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation 89(6):2582–2589

    Article  CAS  PubMed  Google Scholar 

  20. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, Mosca F, Boggi U, Muda AO, Prato SD, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. PNAS 104(12):5115–5120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Filippi C, von Herrath M (2005) How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol 233(2):125–132

    Article  CAS  PubMed  Google Scholar 

  22. Feuer R, Mena I, Pagarigan RR, Hassett DE, Whitton JL (2004) Coxsackievirus replication and the cell cycle: a potential regulatory mechanism for viral persistence/latency. Med Microbiol Immunol 193(2–3):83–90

    Article  CAS  PubMed  Google Scholar 

  23. Martin U, Nestler M, Munder T, Zell R, Sigusch HH, Henke A (2004) Characterization of coxsackievirus B3-caused apoptosis under in vitro conditions. Med Microbiol Immunol 193(2–3):133–139

    CAS  PubMed  Google Scholar 

  24. Rehren F, Ritter B, Dittrich-Breiholz O, Henke A, Lam E, Kati S, Kracht M, Heim A (2013) Induction of a broad spectrum of inflammation-related genes by Coxsackievirus B3 requires Interleukin-1 signaling. Med Microbiol Immunol 202(1):11–23

    Article  CAS  PubMed  Google Scholar 

  25. Huber SA (2005) Increased susceptibility of male BALB/c mice to coxsackievirus B3-induced myocarditis: role for CD1d. Med Microbiol Immunol 194(3):121–127

    Article  CAS  PubMed  Google Scholar 

  26. Rassmann A, Henke A, Jarasch N, Lottspeich F, Saluz HP, Munder T (2007) The human fatty acid synthase: a new therapeutic target for coxsackievirus B3-induced diseases? Antiviral Res 76(2):150–158

    Article  CAS  PubMed  Google Scholar 

  27. Wilsky S, Sobotta K, Wiesener N, Pilas J, Althof N, Munder T, Wutzler P, Henke A (2012) Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch Virol 157(2):259–269

    Article  CAS  PubMed  Google Scholar 

  28. Nasheri N, Joyce M, Rouleau Y, Yang P, Yao S, Tyrrell DL, Pezacki JP (2013) Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem Biol 20(4):570–582

    Article  CAS  PubMed  Google Scholar 

  29. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. PNAS 107(40):17345–17350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates enodthelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276(1):40–47

    Article  CAS  PubMed  Google Scholar 

  31. Stahmann N, Woods A, Carling D, Heller R (2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol 26(16):5933–5945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Knowlton KU, Jeon ES, Berkley N, Wessely R, Huber S (1996) A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 70(11):7811–7818

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Slifka MK, Pagarigan R, Mena I, Feuer R, Whitton JL (2001) Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J Virol 75(5):2377–2387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sauerbrei A, Zell R, Harder M, Wutzler P (2006) Genotyping of different varicella vaccine strains. J Clin Virol 37(2):109–117

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S (2004) Fatty acid synthase expression is induced by the Epstein–Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J Virol 78(8):4197–4206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Richards AL, Soares-Martins JA, Riddell GT, Jackson WT (2014) Generation of unique poliovirus RNA replication organelles. MBio 5(2):e00833-13

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kühnl A, Rien C, Spengler K, Kryeziu N, Sauerbrei A, Heller R, Henke A (2014) Characterization of coxsackievirus B3 replication in human umbilical vein endothelial cells. Med Microbiol Immunol 203(4):217–229

    Article  PubMed  Google Scholar 

  38. Moser TS, Schieffer D, Cherry S (2012) AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8(4):e1002661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Guerciolini R (1997) Mode of action of orlistat. Int J Obes Relat Metab Disord 21(3):12–23

    Google Scholar 

  40. Ballinger A, Peikin SR (2002) Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol 440(2–3):109–117

    Article  CAS  PubMed  Google Scholar 

  41. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism 63(7):895–902

    Article  CAS  PubMed  Google Scholar 

  42. Rassmann A, Henke A, Zobawa M, Carlsohn M, Saluz HP, Grabley S, Lottspeich F, Munder T (2006) Proteome alterations in human host cells infected with coxsackievirus B3. J Gen Virol 87(9):2631–2638

    Article  CAS  PubMed  Google Scholar 

  43. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25(1):1–18

    Article  PubMed Central  PubMed  Google Scholar 

  44. Chuang HY, Chang YF, Hwang JJ (2011) Antitumor effect of orlistat, a fatty acid synthase inhibitor, is via activation of caspase-3 on human colorectal carcinoma-bearing animal. Biomed Pharmacother 65(4):286–292

    Article  CAS  PubMed  Google Scholar 

  45. Rahman MT, Nakayama K, Ishikawa M, Rahman M, Katagiri H, Katagiri A, Ishibashi T, Iida K, Miyazaki K (2013) Fatty acid synthase is a potential therapeutic target in estrogen receptor-/progesterone receptor-positive endometrioid endometrial cancer. Oncology 84(3):166–173

    Article  CAS  PubMed  Google Scholar 

  46. Kent SJ (2012) Loss of control of HIV viremia associated with the fat malabsorption drug orlistat. AIDS Res Hum Retroviruses 28(9):961–962

    CAS  PubMed  Google Scholar 

  47. Rust RC, Landmann L, Gosert R, Tang BL, Hong W, Hauri HP, Egger D, Bienz K (2001) Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 75(20):9808–9818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Trahey M, Oh HS, Cameron CE, Hay JC (2012) Poliovirus infection transiently increases COPII vesicle budding. J Virol 86(18):9675–9682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Belov GA, Ehrenfeld E (2007) Involvement of cellular membrane traffic proteins in poliovirus replication. Cell Cycle 6(1):36–38

    Article  CAS  PubMed  Google Scholar 

  50. Belov GA, Feng Q, Nikovics K, Jackson CL, Ehrenfeld E (2008) A critical role of a cellular membrane traffic protein in poliovirus RNA replication. PLoS Pathog 4(11):e1000216

    Article  PubMed Central  PubMed  Google Scholar 

  51. Whitton JL, Cornell CT, Feuer R (2005) Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3(10):765–776

    Article  CAS  PubMed  Google Scholar 

  52. Richards AL, Jackson WT (2012) Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog 8(11):e1003046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Belov GA, Nair V, Hansen BT, Hoyt FH, Fischer ER, Ehrenfeld E (2012) Complex dynamic development of poliovirus membranous replication complexes. J Virol 86(1):302–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Heaton NS, Randall G (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8(5):422–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Moschen I, Broer A, Galic S, Lang F, Broer S (2012) Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res 37(11):2562–2568

    Article  CAS  PubMed  Google Scholar 

  56. Poreba MA, Dong CX, Li SK, Stahl A, Miner JH, Brubaker PL (2012) Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells. Am J Physiol Endocrinol Metab 303(7):899–907

    Article  Google Scholar 

  57. Rassmann A, Martin U, Saluz HP, Peter S, Munder T, Henke A (2013) Identification of gene expression profiles in HeLa cells and HepG2 cells infected with Coxsackievirus B3. J Virol Methods 187(1):190–194

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Diaz A, Mao L, Ahlquist P, Wang X (2012) Host acyl coenzyme A binding protein regulates replication complex assembly and activity of a positive-strand RNA virus. J Virol 86(9):5110–5121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Chen JC, Wu ML, Huang KC, Lin WW (2008) HMG-CoA reductase inhibitors activate the unfolded protein response and induce cytoprotective GRP78 expression. Cardiovasc Res 80(1):138–150

    Article  CAS  PubMed  Google Scholar 

  60. Fedson DS (2013) Treating influenza with statins and other immunomodulatory agents. Antiviral Res 99(3):417–435

    Article  CAS  PubMed  Google Scholar 

  61. Zhu Q, Li N, Han Q, Zhang P, Yang C, Zeng X, Chen Y, Lv Y, Liu X, Liu Z (2013) Statin therapy improves response to interferon alfa and ribavirin in chronic hepatitis C: a systematic review and meta-analysis. Antiviral Res 98(3):373–379

    Article  CAS  PubMed  Google Scholar 

  62. Adhikari RP, Novick RP (2005) Subinhibitory cerulenin inhibits staphylococcal exoprotein production by blocking transcription rather than by blocking secretion. Microbiology 151(9):3059–3069

    Article  CAS  PubMed  Google Scholar 

  63. Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ, White SW, Rock CO (2014) Type II fatty acid synthesis is essential for the replication of chlamydia trachomatis. J Biol Chem 289(32):22365–22376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Chayakulkeeree M, Rude TH, Toffaletti DL, Perfect JR (2007) Fatty acid synthesis is essential for survival of Cryptococcus neoformans and a potential fungicidal target. Antimicrob Agents Chemother 51(10):3537–3545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Henke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammer, E., Nietzsche, S., Rien, C. et al. The anti-obesity drug orlistat reveals anti-viral activity. Med Microbiol Immunol 204, 635–645 (2015). https://doi.org/10.1007/s00430-015-0391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0391-4

Keywords

Navigation