Skip to main content
Log in

The mechanism of transglutaminase 2 inhibition with glucosamine: implications of a possible anti-inflammatory effect through transglutaminase inhibition

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Although many efforts on revealing mechanism of the constitutive activation of NF-κB in cancer cells contributed to understanding canonical pathways, largely it remains to be determined for therapeutic approaches. Recently, we found that increased expression of transglutaminase 2 (TGase 2) appears to be responsible for constitutive activation of NF-κB in certain types of cancer cells. In previous studies, we demonstrated that TGase 2 inhibition markedly increases anti-cancer drug sensitivity in drug resistance cancer cells. Therefore, we develop safe and effective TGase 2 inhibitors for therapeutic approach.

Methods

We screened a chemical library of natural compounds using in vitro TGase 2 activity assay. The salient discovery was that glucosamine (GlcN), a known anti-inflammatory substance, inhibited the cross-linking activity of TGase 2. We tested, through a biochemical analysis including kinetics, whether the GlcN and GlcN analogs specifically inhibit TGase 2. We also determined the inhibitory mechanism using conformational change of TGase 2.

Results

We found that the primary amine of GlcN plays a key role in TGase 2 inhibition. We also demonstrated that GlcN reversed TGase 2-mediated I-κBα polymerization in vitro. Interestingly, the metabolite of GlcN, glucosamine-6-phosphate (GlcN6P), inhibited TGase 2 activity via binding to the GTP-binding site with better efficiency than GlcN. In the native gel electrophoresis, it was clearly observed that GlcN6P binds to TGase 2 directly as an allosteric inhibitor.

Conclusions

We concluded that GlcN inhibits TGase 2 activity by direct contact. GlcN and its metabolite GlcN6P can down-regulate constitutive activation of NF-κB in vivo via inhibition of TGase 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM (2006a) Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 103(52):19683–19688. doi:10.1073/pnas.0609283103

    Article  PubMed  CAS  Google Scholar 

  • Begg GE, Holman SR, Stokes PH, Matthews JM, Graham RM, Iismaa SE (2006b) Mutation of a critical arginine in the GTP-binding site of transglutaminase 2 disinhibits intracellular cross-linking activity. J Biol Chem 281(18):12603–12609. doi:10.1074/jbc.M600146200

    Article  PubMed  CAS  Google Scholar 

  • Bekesi JG, Winzler RJ (1970) Inhibitory effects of D-glucosamine on the growth of Walker 256 carcinosarcoma and on protein, RNA, and DNA synthesis. Cancer Res 30(12):2905–2912

    PubMed  CAS  Google Scholar 

  • Bosmann HB (1971) Inhibition of protein, glycoprotein, ribonucleic acid and deoxyribonucleic acid synthesis by D-glucosamine and other sugars in mouse leukemic cells L5178Y and selective inhibition in SV-3T3 compared with 3T3 cells. Biochim Biophys Acta 240(1):74–93

    PubMed  CAS  Google Scholar 

  • Bosmann HB (1972) Antineoplastic drug activity in the mitotic cycle—effects of six agents on macromolecular synthesis in synchronous mammalian leukemic cells. Biochem Pharmacol 21(14):1977–1988. doi:10.1016/0006-2952(72)90010-X

    Article  PubMed  CAS  Google Scholar 

  • Case A, Stein RL (2007) Kinetic analysis of the interaction of tissue transglutaminase with a nonpeptidic slow-binding inhibitor. Biochemistry 46(4):1106–1115. doi:10.1021/bi061787u

    Article  PubMed  CAS  Google Scholar 

  • Case A, Ni J, Yeh LA, Stein RL (2005) Development of a mechanism-based assay for tissue transglutaminase—results of a high-throughput screen and discovery of inhibitors. Anal Biochem 338(2):237–244. doi:10.1016/j.ab.2004.09.047

    Article  PubMed  CAS  Google Scholar 

  • Chen JT, Liang JB, Chou CL, Chien MW, Shyu RC, Chou PI, Lu DW (2006) Glucosamine sulfate inhibits TNF-alpha and IFN-gamma-induced production of ICAM-1 in human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 47(2):664–672. doi:10.1167/iovs.05-1008

    Article  PubMed  Google Scholar 

  • Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12(4):469–475. doi:10.1016/j.chembiol.2005.02.007

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Antonyak MA, Cerione RA (2006) Importance of Ca(2+)-dependent transamidation activity in the protection afforded by tissue transglutaminase against doxorubicin-induced apoptosis. Biochemistry 45(44):13163–13174. doi:10.1021/bi0606795

    Article  PubMed  CAS  Google Scholar 

  • Di Venere A, Rossi A, De Matteis F, Rosato N, Agro AF, Mei G (2000) Opposite effects of Ca(2+) and GTP binding on tissue transglutaminase tertiary structure. J Biol Chem 275(6):3915–3921. doi:10.1074/jbc.275.6.3915

    Article  PubMed  Google Scholar 

  • Fare G, Sammons DC, Seabourne FA, Woodhouse DL (1967) Lethal action of sugars on ascites tumor cells in vitro. Nature 213(5073):308–309. doi:10.1038/213308a0

    Article  PubMed  CAS  Google Scholar 

  • Fjelde A, Sorkin E, Rhodes JM (1956) The effect of glucosamine on human epidermoid carcinoma cells in tissue culture. Exp Cell Res 10(1):88–98. doi:10.1016/0014-4827(56)90075-1

    Article  PubMed  CAS  Google Scholar 

  • Fok JY, Ekmekcioglu S, Mehta K (2006) Implications of tissue transglutaminase expression in malignant melanoma. Mol Cancer Ther 5(6):1493–1503. doi:10.1158/1535-7163.MCT-06-0083

    Article  PubMed  CAS  Google Scholar 

  • Folk JE, Chung SI (1985) Transglutaminases. Methods Enzymol 113:358–375. doi:10.1016/S0076-6879(85)13049-1

    Article  PubMed  CAS  Google Scholar 

  • Friedman SJ, Kimball T, Trotter CD, Skehan PJ (1977a) The inhibition of thymidine kinase in glial tumor cells by an amino sugar, D-glucosamine. Cancer Res 37(4):1068–1074

    PubMed  CAS  Google Scholar 

  • Friedman SJ, Trotter CD, Kimball T, Skehan PJ (1977b) The inhibition of thymidine metabolism in tumor cells treated with D-glucosamine. Cancer Res 37(4):1141–1146

    PubMed  CAS  Google Scholar 

  • Gouze JN, Bianchi A, Becuwe P, Dauca M, Netter P, Magdalou J, Terlain B, Bordji K (2002) Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-kappa B pathway. FEBS Lett 510(3):166–170. doi:10.1016/S0014-5793(01)03255-0

    Article  PubMed  CAS  Google Scholar 

  • Han JA, Park SC (1999) Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line. J Cancer Res Clin Oncol 125(2):89–95. doi:10.1007/s004320050247

    Article  PubMed  CAS  Google Scholar 

  • Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci 11:3026–3035. doi:10.2741/2030

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Park SS, Nam BH, Kim IH, Kim SY (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 66(22):10936–10943. doi:10.1158/0008-5472.CAN-06-1521

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Park KS, Jeong KC, Lee BI, Lee CH, Kim SY (2009) Glucosamine is an effective chemo-sensitizer via transglutaminase 2 inhibition. Cancer Lett 273:243–249

    Article  PubMed  CAS  Google Scholar 

  • Lai TS, Slaughter TF, Peoples KA, Hettasch JM, Greenberg CS (1998) Regulation of human tissue transglutaminase function by magnesium-nucleotide complexes. Identification of distinct binding sites for Mg-GTP and Mg-ATP. J Biol Chem 273(3):1776–1781. doi:10.1074/jbc.273.3.1776

    Article  PubMed  CAS  Google Scholar 

  • Largo R, Alvarez-Soria MA, Diez-Ortego I, Calvo E, Sanchez-Pernaute O, Egido J, Herrero-Beaumont G (2003) Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthr Cartil 11(4):290–298. doi:10.1016/S1063-4584(03)00028-1

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279(51):53725–53735. doi:10.1074/jbc.M407627200

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747. doi:10.1073/pnas.042454899

    Article  PubMed  CAS  Google Scholar 

  • Mehta K, Fok J, Miller FR, Koul D, Sahin AA (2004) Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10(23):8068–8076. doi:10.1158/1078-0432.CCR-04-1107

    Article  PubMed  CAS  Google Scholar 

  • Molnar Z, Bekesi JG (1972a) Cytotoxic effects of D-glucosamine on the ultrastructures of normal and neoplastic tissues in vivo. Cancer Res 32(4):756–765

    PubMed  CAS  Google Scholar 

  • Molnar Z, Bekesi JG (1972b) Effects of D-glucosamine, D-mannosamine, and 2-deoxy-D-glucose on the ultrastructure of ascites tumor cells in vitro. Cancer Res 32(2):380–389

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Suzuki H, Sakaguchi M, Mihara K (2004) Targeting and assembly of rat mitochondrial translocase of outer membrane 22 (TOM22) into the TOM complex. J Biol Chem 279(20):21223–21232. doi:10.1074/jbc.M314156200

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Ishikawa K, Yokoyama K, Ohtsuka T, Nio N, Suzuki E (2001) Crystal structure of red sea bream transglutaminase. J Biol Chem 276(15):12055–12059. doi:10.1074/jbc.M009862200

    Article  PubMed  CAS  Google Scholar 

  • Park SS, Kim JM, Kim DS, Kim IH, Kim SY (2006) Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J Biol Chem 281(46):34965–34972. doi:10.1074/jbc.M604150200

    Article  PubMed  CAS  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327. doi:10.1371/journal.pbio.0050327

    Article  PubMed  CAS  Google Scholar 

  • Quastel JH, Cantero A (1953) Inhibition of tumour growth by D-glucosamine. Nature 171(4345):252–254. doi:10.1038/171252a0

    Article  PubMed  CAS  Google Scholar 

  • Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, Leturque A (1996) Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J 314(Pt 3):903–909

    PubMed  CAS  Google Scholar 

  • Roseman S (2001) Reflections on glycobiology. J Biol Chem 276(45):41527–41542. doi:10.1074/jbc.R100053200

    Article  PubMed  CAS  Google Scholar 

  • Rubin A, Springer GF, Hogue MJ (1954) The effect of D-glucosamine hydrochloride and related compounds on tissue cultures of the solid form of mouse sarcoma 37. Cancer Res 14(6):456–458

    PubMed  CAS  Google Scholar 

  • Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115(2):232–245. doi:10.1016/j.pharmthera.2007.05.003

    Article  PubMed  CAS  Google Scholar 

  • Smethurst PA, Griffin M (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by Ca2+ and nucleotides. Biochem J 313(Pt 3):803–808

    PubMed  CAS  Google Scholar 

  • Uldry M, Ibberson M, Hosokawa M, Thorens B (2002) GLUT2 is a high affinity glucosamine transporter. FEBS Lett 524(1–3):199–203. doi:10.1016/S0014-5793(02)03058-2

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Wang H, Manavathi B, Fok JY, Mann AP, Kumar R, Mehta K (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66(21):10525–10533. doi:10.1158/0008-5472.CAN-06-2387

    Article  PubMed  CAS  Google Scholar 

  • Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA 91(15):7296–7300. doi:10.1073/pnas.91.15.7296

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, Piwnica-Worms D, Rich KM (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26(18):2563–2573. doi:10.1038/sj.onc.1210048

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by research grants (Grants NCC0510270 and NCC0810181) to S.-Y. Kim, from the National Cancer Center in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Youl Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, KC., Ahn, KO., Lee, B.I. et al. The mechanism of transglutaminase 2 inhibition with glucosamine: implications of a possible anti-inflammatory effect through transglutaminase inhibition. J Cancer Res Clin Oncol 136, 143–150 (2010). https://doi.org/10.1007/s00432-009-0645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0645-x

Keywords

Navigation