Skip to main content

Advertisement

Log in

Pharmacologic inhibition of mTOR antagonizes the cytotoxic activity of pemetrexed in non-small cell lung cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Pemetrexed, an inhibitor of thymidylate synthase (TS) and additional folate-dependent enzymes, is clinically active in patients suffering from “non-squamous” non-small cell lung cancer (NSCLC). High expression of TS has been implied as biomarker predictive of resistance to pemetrexed. Against this background, we studied whether inhibition of mTOR could lower expression of TS and thus sensitize NSCLC cells to pemetrexed.

Methods and results

Using squamous cell carcinoma and adenocarcinoma NSCLC cell lines, we observed that constitutive TS expression levels failed to correlate with sensitivity to growth inhibition or apoptosis imposed by pemetrexed in vitro. Interestingly, pemetrexed strongly induced TS RNA and protein expression in all cell lines. The allosteric “rapalogue” mTOR inhibitor everolimus suppressed constitutive, but not pemetrexed-induced TS expression. Surprisingly, cotreatment with everolimus protected NSCLC cells against pemetrexed-induced apoptosis. This resulted in increased long-term clonogenic survival of NSCLC cells treated with pemetrexed plus everolimus as compared to pemetrexed alone. No such negative interaction was observed when everolimus was combined with recombinant TRAIL, a proliferation-independent proapoptotic agent.

Conclusions

Rapalogues may suppress the antitumor activity of pemetrexed by slowing cell cycle progression. This should be considered when combining pemetrexed and mTOR inhibitors in NSCLC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28(20):3366–3379

    Article  PubMed  CAS  Google Scholar 

  • An X, Tiwari AK, Sun Y, Ding PR, Ashby CR Jr, Chen ZS (2010) BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 34(10):1255–1268

    Article  PubMed  CAS  Google Scholar 

  • Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408(3):297–315

    Article  PubMed  CAS  Google Scholar 

  • Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G, Steinseifer J, Molloy B, Tokaji E, Gardner H, Phillips P, Stumm M, Lane HA, Dixon JM, Jonat W, Rugo HS (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27(16):2630–2637

    Article  PubMed  CAS  Google Scholar 

  • Bepler G, Sommers KE, Cantor A, Li X, Sharma A, Williams C, Chiappori A, Haura E, Antonia S, Tanvetyanon T, Simon G, Obasaju C, Robinson LA (2008) Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J Thorac Oncol 3(10):1112–1118

    Article  PubMed  Google Scholar 

  • Ceppi P, Volante M, Saviozzi S, Rapa I, Novello S, Cambieri A, Lo Iacono M, Cappia S, Papotti M, Scagliotti GV (2006) Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 107(7):1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Chou TC (1991) The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TCaR DC (ed) Synergism and antagonism in chemotherapy. Academic Press, San Diego, pp 61–102

    Google Scholar 

  • Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  • Coppin C (2010) Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics 4:91–101

    PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105

    Article  PubMed  CAS  Google Scholar 

  • Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G (2002) Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol 33(5):466–477

    Article  PubMed  CAS  Google Scholar 

  • Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S (2011) Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 4(5):476–495

    PubMed  CAS  Google Scholar 

  • Druker BJ (2002) Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 21(56):8541–8546

    Article  PubMed  CAS  Google Scholar 

  • Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C, Cichowski K, Johnson BE, Cantley LC (2005) ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA 102(10):3788–3793

    Article  PubMed  CAS  Google Scholar 

  • Fan QL, Zou WY, Song LH, Wei W (2005) Synergistic antitumor activity of TRAIL combined with chemotherapeutic agents in A549 cell lines in vitro and in vivo. Cancer Chemother Pharmacol 55(2):189–196

    Article  PubMed  CAS  Google Scholar 

  • Frese S, Brunner T, Gugger M, Uduehi A, Schmid RA (2002) Enhancement of Apo2L/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis in non-small cell lung cancer cell lines by chemotherapeutic agents without correlation to the expression level of cellular protease caspase-8 inhibitory protein. J Thorac Cardiovasc Surg 123(1):168–174

    Article  PubMed  CAS  Google Scholar 

  • Giles FJ, Albitar M (2005) Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 5(7):653–661

    Article  PubMed  CAS  Google Scholar 

  • Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, Rinehart C, Seidel B, Yee D, Arteaga CL, Engelman JA (2008) Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Investig 118(7):2609–2619

    PubMed  CAS  Google Scholar 

  • Hahnel PS, Thaler S, Antunes E, Huber C, Theobald M, Schuler M (2008) Targeting AKT signaling sensitizes cancer to cellular immunotherapy. Cancer Res 68(10):3899–3906

    Article  PubMed  Google Scholar 

  • Hanauske AR, Eismann U, Oberschmidt O, Pospisil H, Hoffmann S, Hanauske-Abel H, Ma D, Chen V, Paoletti P, Niyikiza C (2007) In vitro chemosensitivity of freshly explanted tumor cells to pemetrexed is correlated with target gene expression. Investig New Drugs 25(5):417–423

    Article  CAS  Google Scholar 

  • Jiang BH, Liu LZ (2008) Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 11(3):63–76

    Article  PubMed  CAS  Google Scholar 

  • Johnston SR (2009) Enhancing the efficacy of hormonal agents with selected targeted agents. Clin Breast Cancer 9(Suppl 1):S28–S36

    Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(Pt 20):3589–3594

    Article  PubMed  CAS  Google Scholar 

  • LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11(1–2):32–50

    Article  PubMed  CAS  Google Scholar 

  • Neal JW, Sequist LV (2010) First-line use of EGFR tyrosine kinase inhibitors in patients with NSCLC containing EGFR mutations. Clin Adv Hematol Oncol 8(2):119–126

    PubMed  Google Scholar 

  • Ozasa H, Oguri T, Uemura T, Miyazaki M, Maeno K, Sato S, Ueda R (2010) Significance of thymidylate synthase for resistance to pemetrexed in lung cancer. Cancer Sci 101(1):161–166

    Article  PubMed  CAS  Google Scholar 

  • Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27(8):1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Righi L, Papotti MG, Ceppi P, Bille A, Bacillo E, Molinaro L, Ruffini E, Scagliotti GV, Selvaggi G (2010) Thymidylate synthase but not excision repair cross-complementation group 1 tumor expression predicts outcome in patients with malignant pleural mesothelioma treated with pemetrexed-based chemotherapy. J Clin Oncol 28(9):1534–1539

    Article  PubMed  CAS  Google Scholar 

  • Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14(4):320–368

    Article  PubMed  CAS  Google Scholar 

  • Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17(6):596–603

    Article  PubMed  CAS  Google Scholar 

  • Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U, Digumarti R, Zukin M, Lee JS, Mellemgaard A, Park K, Patil S, Rolski J, Goksel T, de Marinis F, Simms L, Sugarman KP, Gandara D (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26(21):3543–3551

    Article  PubMed  CAS  Google Scholar 

  • Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346(2):92–98

    Article  PubMed  CAS  Google Scholar 

  • Schuler W, Sedrani R, Cottens S, Haberlin B, Schulz M, Schuurman HJ, Zenke G, Zerwes HG, Schreier MH (1997) SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64(1):36–42

    Article  PubMed  CAS  Google Scholar 

  • Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF, Andis SL, Bewley JR, Rayl EA, Moroson BA, Beardsley GP, Kohler W, Ratnam M, Schultz RM (1997) LY231514, a pyrrolo[2, 3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57(6):1116–1123

    PubMed  CAS  Google Scholar 

  • Sigmond J, Backus HH, Wouters D, Temmink OH, Jansen G, Peters GJ (2003) Induction of resistance to the multitargeted antifolate Pemetrexed (ALIMTA) in WiDr human colon cancer cells is associated with thymidylate synthase overexpression. Biochem Pharmacol 66(3):431–438

    Article  PubMed  CAS  Google Scholar 

  • Sinnberg T, Lasithiotakis K, Niessner H, Schittek B, Flaherty KT, Kulms D, Maczey E, Campos M, Gogel J, Garbe C, Meier F (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Investig Dermatol 129(6):1500–1515

    Article  PubMed  CAS  Google Scholar 

  • Vignot S, Faivre S, Aguirre D, Raymond E (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16(4):525–537

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, for their help and stimulating discussions. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SCHU1541/5-1) and Deutsche Krebshilfe (No. 107993).

Conflict of interest

Stephan Herbertz is an employee of Novartis Pharma; Martin Schuler has served as consultant to and has received research support from Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schuler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

432_2011_1123_MOESM1_ESM.pdf

Supplemental Figure 1. Thymidylate synthase expression in lung cancer cells following treatment with everolimus. NSCLC cells were cultured in the absence or presence (+) of everolimus (10 nM) for 24 h. Cell lysates were analyzed by immunoblotting for the expression of thymidylate synthase (TS), S6 ribosomal protein phosphorylation (pS6) and actin as a loading control (PDF 344 kb)

432_2011_1123_MOESM2_ESM.pdf

Supplemental Figure 2. Everolimus treatment alters the cell cycle distribution of lung cancer cells. Cell cycle analyses of FaDu, NCl-H23 and A549 cells following 48 h of treatment with everolimus (10 nM) (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, B., Hähnel, P.S., Kasper, S. et al. Pharmacologic inhibition of mTOR antagonizes the cytotoxic activity of pemetrexed in non-small cell lung cancer. J Cancer Res Clin Oncol 138, 545–554 (2012). https://doi.org/10.1007/s00432-011-1123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-011-1123-9

Keywords

Navigation