Skip to main content
Log in

Effect of chemotherapeutic treatment on cytokine (IFN-γ, IL-2, IL-4, IL-5, IL-10) gene transcription in response to specific antigens in Brugia malayi-infected Mastomys coucha

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cytokine (interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-5, IL-10) gene transcription in response to filarial antigens was determined in peripheral blood mononuclear cells of Brugia malayi-infected Mastomys coucha in the course of untreated and chemotherapeutically abbreviated infections. Transcript levels in infected untreated animals suggest particular time courses for the various cytokines with ongoing parasite development and differing efficacies of female, male, microfilarial, and L3 antigens in inducing cytokine gene transcription. Gene transcription of both of Th1- and Th2-associated cytokines were initiated in the course of the infection in a manner that does not fit in a simple Th1–Th2 paradigm. IFN-γ and IL-4 gene transcripts prevailed during prepatency. In case of the other cytokine genes considered in the study, transcription in general peaked around beginning of patency. During the phase of increasing microfilaremia (approximately 120–180 days p. i.) cytokine gene transcription was generally decreased. Later on, when the parasitemia had leveled off, except IFN-γ, transcript levels often tended to increase. In chemotherapeutically treated animals, the outcome varied with the different efficacies of the drugs employed. The highly microfilaricidal cyclodepsipeptide BAY 44-4400 eliminated circulating microfilariae and partially sterilized adult worms without killing them. This kind of treatment hardly affected cytokine responses. In contrast, the therapy with Flubendazole®, a selectively macrofilaricidal benzimidazole, and particularly the application of CGP 20376, a highly efficient microfilaricidal and macrofilaricidal benzthiazole, resulted in enhanced transcription of the Th1-associated IFN-γ and IL-2 genes as well as of the Th2-associated IL-5 gene 2–3 months after treatment. IL-10 gene transcription seemed transiently increased after 1 month. There was no effect of any treatment on the IL-4 gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ash LR, Riley JM (1970) Development of subperiodic Brugia malayi in the jird, Meriones unguiculatus, with notes on infections in other rodents. J Parasitol 56:969–973

    Article  PubMed  CAS  Google Scholar 

  • Babu S, Blauvelt CP, Kumaraswami V, Nutman TB (2006) Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. J Immunol 176:3248–3256

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Canlas MM, Piessens WF (1984) Stage-specific and common antigens of Brugia malayi identified with monoclonal antibodies. J Immunol 132:3138–3141

    PubMed  CAS  Google Scholar 

  • Chandrashekar R, Rao UR, Rajasekariah GR, Subrahmanyam D (1984) Separation of viable microfilariae free of blood cells on Percoll gradients. J Helminthol 58:69–70

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin SR, Rao UR, Coleman SU, Nowling JM, Klei TR (2005a) Profiling the cellular immune response to multiple Brugia pahangi infections in a susceptible host. J Parasitol 91:822–829

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin SR, Rao UR, Mai Z, Coleman SU, Nowling JM, Klei TR (2005b) Kinetics of T cell cytokine gene expression in gerbils after a primary subcutaneous Brugia pahangi infection. J Parasitol 91:264–268

    Article  PubMed  CAS  Google Scholar 

  • Davies KP, Zahner H, Köhler P (1989) Litomosoides carinii: mode of action in vitro of benzothiazole and amoscanate derivatives with antifilarial activity. Exp Parasitol 68:382–391

    Article  PubMed  CAS  Google Scholar 

  • Devaney E, Gillan V, Wheatley I, Jenson J, O'Connor R, Balmer P (2002) Interleukin-4 influences the production of microfilariae in a mouse model of Brugia infection. Parasite Immunol 24:29–37

    Article  PubMed  CAS  Google Scholar 

  • Dixon WJ (1993) BMPD statistical software manual, vols. 1 and 2. University of California Press, Berkeley

    Google Scholar 

  • Fendt J, Hamm DM, Banla M, Schulz-Key H, Wolf H, Helling-Giese G, Heuschkel C, Soboslay PT (2005) Chemokines in onchocerciasis patients after a single dose of ivermectin. Clin Exp Immunol 142:318–326

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Zahner H, Benten P (1990a) Fine structure alterations in female Brugia malayi and Litomosoides carinii after in vivo treatment with flubendazole. Parasitol Res 76:401–405

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Zahner H, Mehlhorn H, Striebel HP (1990b) In vivo effect of benzothiazole and amoscanate derivatives on the fine structure of adult Brugia spp. and Litomosoides carinii. Parasitol Res 76:393–400

    Article  PubMed  CAS  Google Scholar 

  • Gillan V, Devaney E (2005) Regulatory T cells modulate Th2 responses induced by Brugia pahangi third-stage larvae. Infect Immun 73:4034–4042

    Article  PubMed  CAS  Google Scholar 

  • Gillan V, Lawrence RA, Devaney E (2005) B cells play a regulatory role in mice infected with L3 of Brugia pahangi. Int Immunol 17:373–382

    Article  PubMed  CAS  Google Scholar 

  • Gopinath R, Hanna LE, Kumaraswami V, Pillai SV, Kavitha V, Vijayasekaran V, Rajasekharan A, Nutmann TB (1999) Long-term persistence of cellular hyporesponsiveness to filarial antigens after clearance of microfilaremia. Am J Trop Med Hyg 60:848–853

    PubMed  CAS  Google Scholar 

  • Henry NL, Law M, Nutman TB, Klion AD (2001) Onchocerciasis in a nonendemic population: clinical and immunologic assessment before treatment and at the time of presumed cure. J Infect Dis 183:512–516

    Article  PubMed  CAS  Google Scholar 

  • Hoerauf A, Satognina J, Saeftel M, Specht S (2005) Immunomodulation by filarial nematodes. Parasite Immunol 27:417–429

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Gaur RL, Dixit S, Saleemuddin M, Murthy PK (2004) Responses of Mastomys coucha, that have been infected with Brugia malayi and treated with diethylcarbamazine or albendazole, to re-exposure to infection. Ann Trop Med Parasitol 98:817–830

    Article  PubMed  CAS  Google Scholar 

  • Lal RB, Ottesen EA (1988) Characterization of stage-specific antigens of infective larvae of the filarial parasite Brugia malayi. J Immunol 140:2032–2038

    PubMed  CAS  Google Scholar 

  • Lammie PJ, Hightower AW, Richards jr FO, Bryan RT, Spencer HC, McNeeley DF, McNelley MB, Eberhard ML (1992) Alterations in filarial antigen-specific immunologic reactivity following treatment with ivermectin and diethylcarbamazine. Am J Trop Med Hyg 46:292–295

    PubMed  CAS  Google Scholar 

  • Lawrence RA, Devaney E (2001) Lymphatic filariasis: parallels between the immunology of infection in humans and mice. Parasite Immunol 23:353–361

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RA, Allen JE, Osborne J, Maizels RM (1994) Adult and microfilarial stages of the filarial parasite Brugia malayi stimulate contrasting cytokine and Ig isotype responses in BALB/c mice. J Immunol 153:1216–1224

    PubMed  CAS  Google Scholar 

  • Lutsch C, Cesbron JY, Zahner H, Capron A (1987) Detection of circulating and urinary antigens in Mastomys natalensis experimentally infected with Brugia malayi, Brugia pahangi or Litomosoides carinii. Parasitol Res 74:191–195

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM, Blaxter ML, Scott AL (2001) Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunol 23:327–344

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE (2004) Helminth parasites—masters of regulation. Immunol Rev 201:89–116

    Article  PubMed  CAS  Google Scholar 

  • Maréchal P, LeGoff L, Petit G, Diagne M, Taylor DW, Bain O (1996) The fate of the filaria Litomosoides sigmodontis in susceptible and naturally resistant mice. Parasite 3:25–31

    PubMed  Google Scholar 

  • Melrose WD, Copeman DB (2006) Increase in cellular immune responses in Onchocerca-infected cattle after treatment with the microfilaricide, milbemycin. Vet Parasitol 135:85–88

    Article  PubMed  CAS  Google Scholar 

  • Nielsen NO, Bloch P, Simonsen PE (2002) Lymphatic filariasis-specific immune responses to lymphoedema grade and infection status. I. Cellular responses. Trans R Soc Trop Med Hyg 96:446–452

    Article  PubMed  CAS  Google Scholar 

  • Nutman TB, Kumaraswami V (2001) Regulation of the immune response in lymphatic filariasis: perspectives on acute and chronic infection with Wuchereria bancrofti in South India. Parasite Immunol 23:389–399

    Article  PubMed  CAS  Google Scholar 

  • Osborne J, Devaney E (1998) The L3 of Brugia induces a Th2-polarized following activation of IL-4-producing CD4-CD8-alphabeta T cell population. Int Immunol 10:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Pearlman E, Hazlett FE Jr, Boom WH, Kazura JW (1993) Induction of T-helper- cell responses to the filarial nematode Brugia malayi. Infect Immun 61:1105–1112

    PubMed  CAS  Google Scholar 

  • Piessens W, Ratiwayanto S, Piessens PW, Tuti S, McGreevy PP, Darwin F, Palmieri JR, Kosman I, Dennis DT (1981) Effect of treatment with diethylcarbamazine on immune responses to filarial antigens in patients infected with Brugia malayi. Acta Trop 38:227–234

    PubMed  CAS  Google Scholar 

  • Raether W, Meyerhöfer W (1967) Quantitative study methods for the demonstration of microfilaria (Litomosoides carinii) with the help of the Fuchs-Rosenthal and Jessen counting chamber as well as concentration tests. Z Tropenmed Parasitol 18:99–108

    PubMed  CAS  Google Scholar 

  • Rao UR, Nasarre C, Coleman SU, Bakeer M, Dennis VA, Horohov DW, Klei TR (1996) Cellular immune responses of jirds to extracts of life cycle stages and adult excretory secretory products during the early development of Brugia pahangi. Exp Parasitol 82:255–266

    Article  PubMed  CAS  Google Scholar 

  • Sänger I, Lämmler G, Krimmig P (1981) Filarial infections in Mastomys natalensis and their relevance for experimental chemotherapy. Acta Trop 38:277–288

    PubMed  Google Scholar 

  • Sartono E, Kruize YC, Kurniawan A, van der Meide PH, Partono F, Maizels RM, Yazdanbakhsh M (1995) Elevated cellular immune responses and interferon-gamma release after long-term diethylcarbamazine treatment of patients with human lymphatic filariasis. J Infect Dis 171:1683–1687

    PubMed  CAS  Google Scholar 

  • Schares G, Zahner H (1994) IgG subclasses of the multimammate rat, Mastomys coucha: isolation and characterization of IgG1 and IgG2. J Exp Anim Sci 36:55–69

    PubMed  CAS  Google Scholar 

  • Soboslay PT, Dreweck CM, Hoffmann WH, Luder CG, Heuschkel C, Gorgen H, Banla M, Schulz-Key H (1992) Ivermectin-facilitated immunity in onchocerciasis. Reversal of lymphocytopenia, cellular anergy and deficient cytokine production after single treatment. Clin Exp Immunol 89:407–413

    PubMed  CAS  Google Scholar 

  • Taubert A, Zahner H (2001) Cellular immune responses of filaria (Litomosoides sigmodontis) infected BALB/c mice detected on the level of cytokine transcription. Parasite Immunol 23:453–462

    Article  PubMed  CAS  Google Scholar 

  • Weller PF (1978) Cell-mediated immunity in experimental filariasis: lymphocyte reactivity to filarial stage-specific antigens and to B- and T-cell mitogens during acute and chronic infection. Cell Immunol 37:369–382

    Article  PubMed  CAS  Google Scholar 

  • Zahner H, Rudolph R (1987) Comparative histopathological studies in experimental filarial infections. Zbl Bakt Microbiol Hyg A 265:553–554

    Google Scholar 

  • Zahner H, Schares G (1993) Experimental chemotherapy of filariasis: comparative evaluation of the efficacy of filaricidal compounds in Mastomys coucha infected with Litomosoides carinii, Acanthocheilonema viteae, Brugia malayi and B. pahangi. Acta Trop 52:221–266

    Article  PubMed  CAS  Google Scholar 

  • Zahner H, Soulsby EJL, Weidner E, Sänger I, Lämmler G (1987) Reaginic and homocytotropic IgG antibody response of Mastomys natalensis in experimental infections of filarial parasites (Litomosoides carinii, Dipetalonema viteae, Brugia malayi, Brugia pahangi). Parasitol Res 73:271–280

    Article  PubMed  CAS  Google Scholar 

  • Zahner H, Striebel HP, Schütze HR, Sänger I, Müller HA, Schultheiß K (1988a) Antifilarial activities of benzazole derivatives. 1. Macrofilaricidal effects against Litomosoides carinii; Dipetalonema viteae, Brugia malayi and B. pahangi in Mastomys natalensis. Trop Med Parasitol 9:14–18

    Google Scholar 

  • Zahner H, Striebel HP, Schütze HR, Sänger I, Müller HA, Schultheiß K (1988b) Antifilarial activities of benzazole derivatives. 2. Microfilaricidal effects against Litomosoides carinii; Acanthocheilonema viteae, Brugia malayi and B. pahangi in Mastomys natalensis. Trop Med Parasitol 39:284–290

    PubMed  CAS  Google Scholar 

  • Zahner H, Sänger I, Chatterjee RK, Seibold G (1989) Altered immune response (humoral and delayed type hypersensitivity reactions) to sheep red blood cells in the course of experimental filarial infections (Litomosoides carinii, Brugia malayi, Acanthocheilonema viteae) of Mastomys natalensis. Parasitol Res 75:401–411

    Article  PubMed  CAS  Google Scholar 

  • Zahner H, Taubert A, Harder A, Samson-Himmelstjerna von G (2001) Filaricidal efficacy of anthelmintically active cyclodepsipeptides. Int J Parasitol 31:1515–1522

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Dr. K. Failing (Giessen) in statistical analyses. This work was partly supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Zahner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, M., Taubert, A., Dafa’alla, T. et al. Effect of chemotherapeutic treatment on cytokine (IFN-γ, IL-2, IL-4, IL-5, IL-10) gene transcription in response to specific antigens in Brugia malayi-infected Mastomys coucha . Parasitol Res 103, 1163–1176 (2008). https://doi.org/10.1007/s00436-008-1112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1112-3

Keywords

Navigation