Skip to main content

Advertisement

Log in

In vitro antifilarial activity of glutathione S-transferase inhibitors

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Female adult bovine filarial worms Setaria digitata were extracted with phosphate-buffered saline (pH 7.4) and glutathione S-transferase (GST) activity and protein content were determined. The protein content, GST enzyme activity, and specific activity were 10.61 ± 3.41 mg ml−1, 0.09 ± 0.019 μmol min−1 ml−1, and 0.009 ± 0.002 μmol min−1 mg−1 protein, respectively. The GST inhibition studies were performed with and without the inhibitors resulted from earlier molecular docking studies viz., ethacrynic acid, plumbagin, and curcumin for which the IC50 values were 19.42, 51.41, and 114.86 μM, respectively. The in vitro macrofilaricidal activity of these molecules was studied by worm motility and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay at 24- and 48-h incubation. Plumbagin and ethacrynic acid showed 100% inhibition in worm motility at lower concentrations of 3.19 and 6.6 μM, respectively, at 48-h incubation while curcumin was effective at 54.29 μM. In MTT reduction assay, the ED50 values (50% inhibition in formazan formation) for plumbagin, ethacrynic acid, and curcumin at 48-h incubation were 1.20, 2.48, and 19.86 μM, respectively. MTT reduction assay showed that plumbagin was the most effective in killing the adult S. digitata worms followed by ethacrynic acid and curcumin. In conclusion, all the three molecules selected by molecular modeling and docking studies inhibited the GST enzyme isolated from S. digitata and exhibited macrofilaricidal activity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ahmad R, Srivastava AK (2007) Purification and biochemical characterization of cytosolic glutathione-S-transferase from malarial parasites Plasmodium yoelii. Parasitol Res 100:581–588

    Article  PubMed  Google Scholar 

  • Ahmad R, Srivastava AK (2008) Inhibition of glutathione-S-transferase from Plasmodium yoelii by protoporphyrin IX, cibacron blue and menadione: implications and therapeutic benefits. Parasitol Res 102(4):805–807

    Article  PubMed  Google Scholar 

  • Ahokas JT, Nicholls FA, Ravenscroft PJ, Emmerson BT (1985) Inhibition of purified rat liver glutathione S-transferase isozymes by diuretic drugs. Biochem Pharmacol 34:2157–2161

    Article  PubMed  CAS  Google Scholar 

  • Awasthi S, Pandya U, Singhal SS, Lin JT, Thiviyanathan V, Seifert WE Jr, Awasthi YC, Ansari GAS (2000) Curcumin–glutathione interactions and the role of human glutathione S-transferase P1-1. Chem Biol Interact 128:19–38

    Article  PubMed  CAS  Google Scholar 

  • Bajpai P, Verma SK, Katiyar D, Tewari N, Tripathi RP, Bansal I, Saxena JK, Bhattacharya SM (2005) Search for new prototypes for the chemotherapy of filariasis: a chemotherapeutic and biochemical approach. Parasitol Res 95(6):383–390

    Article  PubMed  Google Scholar 

  • Brophy PM, Pritchard DI (1994) Parasitic helminth glutathione S-transferases: an update on their potential as targets for immuno- and chemotherapy. Exp Parasitol 79:89–96

    Article  PubMed  CAS  Google Scholar 

  • Brophy PM, Campbell AM, van Eldik AJ, Teesdale-Spittle PH, Liebau E, Wang MF (2000) Beta-carbonyl substituted glutathione conjugates as inhibitors of O. volvulus GST2. Bioorg Med Chem Lett 10(9):979–981

    Article  PubMed  CAS  Google Scholar 

  • Campbell AM, van Eldik AJ, Liebau E, Barrett J, Brophy PM, Teesdale-Spittle PH, Wang MF (2001) Towards validation of glutathione S-transferase (GST) as a filarial nematode drug target. Chem–Biol Interact 133:240–243

    CAS  Google Scholar 

  • Comley JCW, Rees MJ, Turner CH, Jenkins DC (1989) Colorimetric quantitation of filarial viability. Int J Parasitol 19(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Harwaldt P, Rahlfs S, Becker K (2002) Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol Chem 383(5):821–830

    Article  PubMed  CAS  Google Scholar 

  • Iersel ML, Ploemen JP, Struik I, van Amersfoort C, Keyzer AE, Schefferlie JG, van Bladeren PJ (1996) Inhibition of glutathione S-transferase activity in human melanoma cells by alpha, beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem Biol Interact 102:117–132

    Article  PubMed  CAS  Google Scholar 

  • Kaushal NA, Kaushal DC, Ghatac S (1987) Identification of antigenic proteins of Setaria cervi by immunoblotting technique. Immunol Invest 16:139–149

    Article  PubMed  CAS  Google Scholar 

  • Konanz S, Nanen R (2004) Purification and partial characterization of a glutathione S-transferase from the two spotted spider mite, Tetranychus urticae. Pest Biochem Physiol 79(2):49–57

    Article  CAS  Google Scholar 

  • Lazdins J, Kron M (1999) New molecular targets for filariasis drug discovery. Parasitol Today 15(8):305–306

    Article  PubMed  CAS  Google Scholar 

  • Liebau E, Wildenburg G, Brophy PM, Walter RD, Henkle-Duhrsen K (1996) Biochemical analysis, gene structure and localization of the 24 kDa glutathione S-transferase from Onchocerca volvulus. Mol Biochem Parasitol 80(1):27–39

    Article  PubMed  CAS  Google Scholar 

  • Liu LX, Weller PF (1996) Drug therapy: antiparasitic drugs. New Engl J Med 334:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–276

    PubMed  CAS  Google Scholar 

  • Michele AM, DeWight RW, John AT (1995) Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistomal drug Praziquantel. J Mol Biol 246(1):21–27

    Article  Google Scholar 

  • Nathan ST, Nisha M, Kalyanasundaram M, Balaraman K (2005) Structure of glutathione S-transferase of the filarial parasite Wuchereria bancrofti—a target for drug development against adult worm. J Mol Model 11:194–199

    Article  PubMed  CAS  Google Scholar 

  • Nisha M, Paily KP, Vanamail P, Abidha, Kalyanasundaram M, Balaraman K (2002) Macrofilaricidal activity of the plant Plumbago indica/rosea in vitro. Drug Dev Res 56(1):33–39

    Article  Google Scholar 

  • Nisha M, Kalyanasundaram M, Paily KP, Abidha, Vanamail P, Balaraman K (2007) In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol Res 100(3):575–579

    Article  PubMed  Google Scholar 

  • Nisha M, Kalyanasundaram M (2007) Antifilarial agents. Expert Opin Ther Pat 17(3):767–789

    Google Scholar 

  • Oetari S, Sudibyo M, Commandeur JNM, Samhoedi R, Vermeulen NPE (1996) Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochem Pharmacol 51(1):39–45

    Article  PubMed  CAS  Google Scholar 

  • Oliveira-Menezes A, Lins R, Norões J, Dreyer G, Lanfredi RM (2007) Comparative analysis of a chemotherapy effect on the cuticular surface of Wuchereria bancrofti adult worms in vivo. Parasitol Res 101(5):1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Precious WY, Barrett J (1989) Xenobiotic metabolism in helminths. Parasitol Today 5:156–160

    Article  PubMed  CAS  Google Scholar 

  • Rao UR, Salinas G, Mehta K, Klei TR (2000) Identification and localization of glutathione S-transferase as a potential target enzyme in Brugia species. Parasitol Res 86(11):908–915

    Article  PubMed  CAS  Google Scholar 

  • Strote G, Bonow I, Kromer M, Rubio de Kromer T, Attah S, Opoku N (1998) Chemotherapy for onchocerciasis: results of in vitro experiments with promising new compounds. Trop Med Int Health 3(5):397–407

    PubMed  CAS  Google Scholar 

  • Tewari S, Chauhan PM, Bhaduri AP, Fatima N, Chatterjee RK (2000) Synthesis and antifilarial profile of 7-chloro-4-(substituted amino) quinolines: a new class of antifilarial agents. Bioorg Med Chem Lett 10(13):1409

    Article  PubMed  CAS  Google Scholar 

  • WHO (1997) Lymphatic filariasis elimination. Report of a Meeting of the Principals for Further Enhancement of Public/Private Partnership. WHO, Geneva

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. P. Jambulingam, Director, Vector Control Research Centre for providing the facility and support. The authors thank Mrs. R. Anilakumari and Mr. S. Srinivasan for rendering technical assistance. The financial support given by Department of Science and Technology, Govt. of India is greatfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, L., Mathew, N. & Muthuswamy, K. In vitro antifilarial activity of glutathione S-transferase inhibitors. Parasitol Res 105, 1179–1182 (2009). https://doi.org/10.1007/s00436-009-1534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1534-6

Keywords

Navigation