Skip to main content
Log in

Use of microarray hybridization to identify Brugia genes involved in mosquito infectivity

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Brugia malayi and Brugia pahangi microfilariae (mf) require a maturation period of at least 5 days in the mammalian host to successfully infect laboratory mosquitoes. This maturation process coincides with changes in the surface composition of mf that likely are associated with changes in gene expression. To test this hypothesis, we verified the differential infectivity of immature (≤3 day) and mature (>30 day) Brugia mf for black-eyed Liverpool strain of Aedes aegypti and then assessed transcriptome changes associated with microfilarial maturation by competitively hybridizing microfilarial cDNAs to the B. malayi oligonucleotide microarray. We identified transcripts differentially abundant in immature (94 in B. pahangi and 29 in B. malayi) and mature (64 in B. pahangi and 14 in B. malayi) mf. In each case, >40% of Brugia transcripts shared no similarity to known genes or were similar to genes with unknown function; the remaining transcripts were categorized by putative function based on sequence similarity to known genes/proteins. Microfilarial maturation was not associated with demonstrable changes in the abundance of transmembrane or secreted proteins; however, immature mf expressed more transcripts associated with immune modulation, neurotransmission, transcription, and cellular cytoskeleton elements, while mature mf displayed increased transcripts potentially encoding hypodermal/muscle and surface molecules, e.g., cuticular collagens and sheath components. The results of the homologous B. malayi microarray hybridization were validated by quantitative reverse transcriptase polymerase chain reaction. These findings preliminarily lend support to the underlying hypothesis that changes in microfilarial gene expression drive maturation-associated changes that influence the parasite to develop in compatible vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mf:

Microfilariae

LVP:

Black-eyed Liverpool strain of Aedes aegypti

LF:

Lymphatic filariasis

P/S:

100 μg/mL penicillin and 100 μg/mL streptomycin

PE:

Post-exposure

ESTs:

Expressed sequence tags

TIGR:

The Institute for Genomic Research

BLAST:

Basic local alignment search tool

References

  • Aboobaker AA, Blaxter ML (2003) Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 129:41–51

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Apfel H, Eisnbeiss WF, Meyer TF (1992) Changes in the surface composition after transmission of Acanthocheilonema viteae third stage larvae to the jird. Mol Biochem Parasitol 52:63–74

    Article  CAS  PubMed  Google Scholar 

  • Araujo ACG, Souto-Padron T, De Souza W (1993) Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi. J Histochem Cytochem 41:571–578

    CAS  PubMed  Google Scholar 

  • Araujo A, Souto-Padron T, De Souza W (1994) An ultrastructural, cytochemical and freeze-fracture study of the surface structures of Brugia malayi microfilariae. Int J Parasitol 24:899–907

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Bartholomay LC, Mayhew GF, Fuchs JF, Rocheleau TA, Erickson SM, Aliota MT, Christensen BM (2007) Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti. Insect Mol Biol 16:761–776

    CAS  PubMed  Google Scholar 

  • Beerntsen BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64:115–137

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalp 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, Nutman TB (2009) Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis 3:e410

    Article  PubMed  CAS  Google Scholar 

  • Brehm K, Wolf M, Beland H, Kroner A, Frosch M (2003) Analysis of differential gene expression in Echinococcus multilocularis larval stages by means of spliced leader differential display. Int J Parasitol 33:1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed  Google Scholar 

  • Canlas M, Wadee A, Lamontagne L, Piessens WF (1984) A monoclonal antibody to surface antigens on microfilariae of Brugia malayi reduces microfilaraemia in infected jirds. Am J Trop Med Hyg 33:420–424

    CAS  PubMed  Google Scholar 

  • Chandrashekar R, Rao UR, Rajasekariah GR, Subrahmanyam D (1984) Separation of viable microfilariae free of blood cells on Percoll gradients. J Helminthol 58:67–70

    Article  Google Scholar 

  • Christensen BM, LI J, Chen CC, Nappi A (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199

    Article  CAS  PubMed  Google Scholar 

  • Christensen BM, Sutherland DR (1984) Brugia pahangi: exsheathment and midgut penetration in Aedes aegypti. Trans Am Microsc Soc 103:423–433

    Article  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. CABIOS 10:685–686

    CAS  PubMed  Google Scholar 

  • de Hollanda JC, Denham DA, Suswillo RR (1982) The infectivity of Brugia pahangi of different ages to Aedes aegypti. J Helminthol 56:155–157

    Article  PubMed  Google Scholar 

  • Dissanayake S, Xu M, Piessens WF (1992) A cloned antigen for serological diagnosis of Wuchereria bancrofti microfilaremia with daytime blood samples. Mol Biochem Parasitol 56:269–278

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachey M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Lane WS, Smith RF, Piessens WF, Perler FB (1992) Transmission-blocking antibodies recognize microfilarial chitinase in Brugian lymphatic filariasis. Proc Natl Acad Sci USA 89:1548–1552

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Piessens WF (1985) Chitin synthesis and sheath morphogenesis in Brugia malayi microfilariae. Mol Biochem Parasitol 17:93–104

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Piessens WF (1989) A stage-specific calcium-binding protein from microfilariae of Brugia malayi (Filariidae). Mol Biochem Parasitol 35:249–257

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Urioste SS, Hamill B, Speilman A, Piessens WF (1987) Functional and antigenic maturation of Brugia malayi microfilariae. Am J Trop Med Hyg 36:70–74

    CAS  PubMed  Google Scholar 

  • Furman A, Ash LR (1983a) Analysis of Brugia pahangi microfilariae surface carbohydrates: comparison of the binding of a panel of fluoresceinated lectins to mature in vivo derived and immature in utero-derived microfilariae. Acta Trop 40:45–51

    CAS  PubMed  Google Scholar 

  • Furman A, Ash LR (1983b) Characterization of the exposed carbohydrates on the sheath surface of in vitro-derived Brugia pahangi microfilariae by analysis of lectin binding. Parasitology 69:1043–1047

    Article  CAS  Google Scholar 

  • Gaj S, Eijssen L, Mensink RP, Evelo CTA (2008) Validating nutrient-related gene expression changes from microarrays using RT PCR-assays. Genes Nutr 3:153–157

    Article  CAS  PubMed  Google Scholar 

  • Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrín-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    Article  CAS  PubMed  Google Scholar 

  • Ham PJ, Smail AJ, Groeger BK (1988) Surface carbohydrate changes on Onchocerca lienalis larvae as they develop from microfilariae to the infective third-stage in Simulium ornatum. J Helminthol 62:195–205

    Article  CAS  PubMed  Google Scholar 

  • Hayes RO (1953) Determination of a physiological saline for Aedes aegypti (L.). J Econ Entomol 46:624–627

    Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  • Hirzmann J, Hintz M, Kasper M, Shresta TR, Taubert A, Conraths FJ, Geyer R, Stirm S, Zahner H, Hohom G (2002) Cloning and expression analysis of two mucin-like genes encoding microfilarial sheath surface proteins of the parasitic nematodes Brugia and Litomosoides. Biol Chem 277:47603–47612

    Article  CAS  Google Scholar 

  • Jiang D, Li BW, Fischer PU, Weil GJ (2008) Localization of gender-regulated gene expression in the filarial nematode Brugia malayi. Int J Parasitol 38:503–512

    Article  CAS  PubMed  Google Scholar 

  • Johnson P, Mackenzie CD, Suswillo RR, Denham DA (1981) Serum-mediated adherence of feline granulocytes for microfilariae of Brugia pahangi in vitro: variations with parasite maturation. Parasite Immunol 3:69–80

    Article  CAS  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Laurence BR, Pester FRN (1967) Adaptation of a filarial worm, Brugia patei, to a new mosquito host, Aedes togoi. J Helminthol 41:365–392

    Article  CAS  PubMed  Google Scholar 

  • Laurence BR, Simpson MG (1974) The ultrastructure of the microfilariae of Brugia, Nematoda: Filarioidea. Int J Parasitol 4:523–536

    Article  CAS  PubMed  Google Scholar 

  • Lewis E, Hunter SJ, Tetley L, Nunes CP, Bazzicalupo P, Devaney E (1999) Cut-1-like genes are present in the filarial nematodes, Brugia pahangi and Brugia malayi, and, as in other nematodes code for components of the cuticle. Mol Biochem Parasitol 101:173–183

    Article  CAS  PubMed  Google Scholar 

  • Li B, Rush AC, Crosby SD, Warren WC, Williams SA, Mitreva M, Weil GJ (2005) Profiling of gender-regulated gene transcripts in the filarial nematode Brugia malayi by cDNA oligonucleotide array analysis. Mol Biochem Parasitol 143:49–57

    Article  CAS  PubMed  Google Scholar 

  • Macdonald WW (1962) The selection of a strain of Aedes aegypti susceptible to infection with Brugia malayi. Ann Trop Med Parasitol 56:373–382

    Google Scholar 

  • Macdonald WW, Ramachandran CP (1965) The influence of the gene Fm (filarial susceptibility, Brugia malayi) on the susceptibility of Aedes Aegypti to seven strains of Brugia, Wuchereria and Dirofilaria. Ann Trop Med Parasitol 59:64–73

    CAS  PubMed  Google Scholar 

  • Michael E, Bundy DA, Grenfell BT (1997) Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 112:409–428

    Article  Google Scholar 

  • Moreno Y, Geary TG (2008) Stage- and gender-specific proteomic analysis of Brugia malayi excretory–secretory products. PLoS Neg Trop Dis 2:e326

    Article  CAS  Google Scholar 

  • Morey JS, Ryan JC, Van Dolah F (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193

    Article  CAS  PubMed  Google Scholar 

  • Paba J, Santana JM, Teixeira AR, Fontes W, Sousa MV, Ricart C (2004) Proteomic analysis of the human pathogen Trypanosoma cruzi. Proteomics 4:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Paulson CW, Jacobson RH, Cupp EW (1988) Microfilarial surface carbohydrates as a function of developmental stage and ensheathment status in six species of filariids. J Parasitol 74:743–747

    Article  CAS  PubMed  Google Scholar 

  • Rutledge LC, Ward RA, Gould DJ (1964) Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosq News 24:407–419

    Google Scholar 

  • Sasisekhar B, Suba N, Sindhuja S, Sofi GM, Narayanan RB (2005) Setaria digitata: identification and characterization of a hypodermally expressed SXP/RAL2 protein. Exp Parasitol 111:121–125

    Article  CAS  PubMed  Google Scholar 

  • Sayers G, Mackenzie CD, Denham DA (1984) Biochemical surface components of Brugia pahangi microfilariae. Parasitology 89:425–434

    Article  CAS  PubMed  Google Scholar 

  • Simpson MG, Laurence BR (1974) Histochemical studies on microfilariae. Parasitology 64:61–88

    Article  Google Scholar 

  • Smith VP, Selkirk ME, Gounaris K (1998) Brugia malayi: resistance of cuticular lipids to oxidant-induced damage and diction of α-Tocopherol in the neutral lipid fraction. Exp Parasitol 88:103–110

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Stein PE (2003) BmSPN2, a serpin secreted by the filarial nematode Brugia malayi, does not inhibit human neutrophil proteinases but plays a noninhibitory role. Biochemistry 42:6241–6248

    Article  CAS  PubMed  Google Scholar 

  • Storey KB (2003) Mammalian hibernation. Transcriptional and translational controls. Adv Exp Med Biol 543:21–38

    CAS  PubMed  Google Scholar 

  • Sutherland DR, Christensen BM, Forton KF (1984) Defense reactions of mosquitoes to filarial worms: role of the microfilarial sheath in response of mosquitoes to inoculated B. pahangi microfilariae. J Invert Pathol 44:275–281

    Article  CAS  Google Scholar 

  • Townson H, Chaithong U (1991) Mosquito host influences on development of filariae. Ann Trop Med Parasitol 85:149–163

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Ogura N, Kobayashi M, Chigusa Y (1983) Studies on filariasis II: exsheathment of the microfilariae of B. pahangi in Armigeres subalbatus. Jap J Parasit 32:287–292

    Google Scholar 

  • Yamazaki M, Saito K (2002) Differential display analysis of gene expression in plants. Cell Mol Life Sci 59:1246–1255

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Yazdanbakhsh M, Jiang H, Kanost MR, Maizels RM (1999) A novel serpin expressed by blood-borne microfilariae of the parasitic nematode Brugia malayi inhabits human neutrophil serine proteinases. Blood 94:1418–1428

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the assistance with worm transplants provided by Marty Greer and Jessica Nerenhausen. We also thank Juliet Fuhrman, Steven Williams, and Lori Saunders for helpful discussion. This project was funded by National Institutes of Health grants 1 R15 AI067295-01A1 and AI 19769. Microfilaraemic blood and infected jirds were supplied by the Filariasis Research Reagent Repository Center at the University of Georgia. K. Griffiths is a recipient of a University of Wisconsin-Oshkosh 2008 Graduate Student Collaborative Research Grant. All animal protocols were reviewed and approved by UWO and UWM Institutional Animal Care and Use Committees.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Michalski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

B. malayi immature mf differentially abundant transcripts (DOC 16 kb)

Supplemental Table 2

B. malayi mature mf differentially abundant transcripts (DOC 15 kb)

Supplemental Table 3

B. pahangi immature mf differentially abundant transcripts (DOC 29 kb)

Supplemental Table 4

B. pahangi mature mf differentially abundant transcripts (DOC 26 kb)

Supplemental Table 5

Abundant immature mf transcripts from B. malayi that share sequence similarity on the peptide level with C. elegans genes displaying RNAi phenotypes. Source: Wormpep (DOC 13 kb)

Supplemental Table 6

Abundant mature mf transcripts from B. malayi that share sequence similarity on the peptide level with C. elegans genes displaying RNAi phenotypes (DOC 13 kb)

Supplemental Table 7

Abundant immature mf transcripts from B. pahangi that share sequence similarity on the peptide level with C. elegans genes displaying RNAi phenotypes (DOC 17 kb)

Supplemental Table 8

Abundant mature mf transcripts from B. pahangi that share sequence similarity on the peptide level with C. elegans genes displaying RNAi phenotypes (DOC 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, K.G., Mayhew, G.F., Zink, R.L. et al. Use of microarray hybridization to identify Brugia genes involved in mosquito infectivity. Parasitol Res 106, 227–235 (2009). https://doi.org/10.1007/s00436-009-1655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1655-y

Keywords

Navigation