Skip to main content
Log in

Variation of parasite load and immune parameters in two species of New Zealand shore crabs

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

While parasites are likely to encounter several potential intermediate hosts in natural communities, a parasite’s actual range of compatible hosts is limited by numerous biological factors ranging from behaviour to immunology. In crustaceans, two major components of immunity are haemocytes and the prophenoloxidase system involved in the melanisation of foreign particles. Here, we analysed metazoan parasite prevalence and loads in the two sympatric crab species Hemigrapsus crenulatus and Macrophthalmus hirtipes at two sites. In parallel, we analysed the variation in haemocyte concentration and amount of circulating phenoloxidase (PO) in the haemolymph of the same individuals in an attempt to (a) explain differences in parasite prevalence and loads in the two species at two sites and (b) assess the impact of parasites on these immune parameters. M. hirtipes harboured more parasites but also exhibited higher haemocyte concentrations than H. crenulatus independent of the study site. Thus, higher investment in haemocyte production for M. hirtipes does not seem to result in higher resistance to parasites. Analyses of variation in immune parameters for the two crab species between the two sites that differed in parasite prevalence showed common trends. (a) In general, haemocyte concentrations were higher at the site experiencing higher parasitic pressure while circulating PO activity was lower and (b) haemocyte concentrations were influenced by microphallid trematode metacercariae in individuals from the site with higher parasitic pressure. We suggest that the higher haemocyte concentrations observed in both crab species exposed to higher parasitic pressure may represent an adaptive response to the impact of parasites on this immune parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamson ML, Caira JN (1994) Evolutionary factors influencing the nature of parasite specificity. Parasitology 109:S85–S95

    Article  PubMed  Google Scholar 

  • Brockerhoff AM, Smales LR (2002) Profilicolllis novaezelandensis n. sp. (Polymorphidae) and two other acanthocephalan parasites from shore birds (Haematopodidae and Scolopacidae) in New Zealand, with records of two species in intertidal crabs (Decapoda: Grapsidae and Ocypodidae). Syst Parasitol 52:55–65

    Article  PubMed  CAS  Google Scholar 

  • Bryan-Walker K, Leung TLF, Poulin R (2007) Local adaptation of immunity against a trematode parasite in marine amphipod populations. Mar Biol 152:687–695

    Article  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  PubMed  CAS  Google Scholar 

  • Cerenius L, Lee BL, Söderhäll K (2008) The proPO-System: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    Article  PubMed  CAS  Google Scholar 

  • Cerenius L, Babu R, Söderhäll K, Jiravanichpaisal P (2010) In vitro effects on bacterial growth of phenoloxidase reaction products. J Invertebr Pathol 103:21–23

    Article  PubMed  CAS  Google Scholar 

  • Chisholm JRS, Smith VJ (1992) Antibacterial activity in the haemocytes of the shore crab, Carcinus maenas. J Mar Biol Assoc UK 72:529–542

    Article  CAS  Google Scholar 

  • Combes C (2001) Parasitism. The ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Cornet S, Biard C, Moret Y (2009) Variation in immune defence among populations of Gammarus pulex (Crustacea: Amphipoda). Oecologia 159:257–269

    Article  PubMed  Google Scholar 

  • Damian RT (1997) Parasite immune evasion and exploitiation: reflections and projections. Parasitology 115:S169–S175

    Article  PubMed  Google Scholar 

  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez G, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  PubMed  CAS  Google Scholar 

  • Destoumieux D, Muñoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachère E (2000) Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 113:461–469

    PubMed  CAS  Google Scholar 

  • Euzet L, Combes C (1980) Les problèmes de l’espèce chez les animaux parasites. In: Boquet C, Genermont J, Lamotte M (eds) Les problèmes de l’espèce dans le règne animal. Tome III. Mémoires de la Société Zoologique Française 40:239–285

  • Fagutao FF, Koyama T, Kaizu A, Saito-Taki T, Kondo H, Aoki T, Hirono I (2009) Increased bacterial load in the shrimp hemolymph in the absence of prophenoloxidase. FEBS J 276:5298–5306

    Article  PubMed  CAS  Google Scholar 

  • Fredensborg BL, Poulin R (2006) Parasitism shaping host life-history evolution: adaptive responses in a marine gastropod to infection by trematodes. J Anim Ecol 75:44–53

    Article  PubMed  CAS  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2004) Intensity-dependent mortality of Paracalliope novizealandiae (Amphipoda: Crustacea) infected by a trematode: experimental infections and field observations. J Exp Mar Biol Ecol 311:253–265

    Article  Google Scholar 

  • Galaktionov KV, Malkova II, Irwin SWB, Saville DH, Maguire JG (1996) Developmental changes in the tegument of four microphallid metacercariae in their second (crustacean) intermediate hosts. J Helminthol 70:201–210

    Article  Google Scholar 

  • Hose JE, Martin GG, Gerard AS (1990) A decapod hemocyte classification scheme integrating morphology, cytochemistry and function. Biol Bull 178:33–45

    Article  Google Scholar 

  • Jaenicke E, Fraune S, May S, Irmak P, Augustin R, Meesters C, Decker H, Zimmer M (2009) Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice? Dev Comp Immunol 33:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanisation and opsonization. Immunobiology 211:213–236

    Article  PubMed  CAS  Google Scholar 

  • Keeney DB, Waters JM, Poulin R (2007) Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. Int J Parasitol 37:351–357

    Article  PubMed  CAS  Google Scholar 

  • Kitaura J, Wada K, Nishida M (2002) Molecular phylogeny of grapsoid and ocypodoid crabs with special reference to the genera Metaplax and Macrophthalmus. J Crustac Biol 22:682–693

    Article  Google Scholar 

  • Koehler AV, Poulin R (2010) Host partitioning by parasites in an intertidal crustacean community. J Parasitol 96:862–868

    Article  PubMed  Google Scholar 

  • Kostadinova A, Mavrodieva RS (2005) Microphallids in Gammarus insensibilis Stock, 1966 from a Black Sea lagoon: host response to infection. Parasitology 131:347–354

    Article  PubMed  CAS  Google Scholar 

  • Latham ADM, Poulin R (2002a) Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs. J Helminthol 76:323–326

    Article  PubMed  CAS  Google Scholar 

  • Latham ADM, Poulin R (2002b) Field evidence of the impact of two acanthocephalan parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Mar Biol 141:1131–1139

    Article  Google Scholar 

  • Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Söderhäll I, Söderhäll K (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. J Biol Chem 282:33593–33598

    Article  PubMed  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Matozzo V, Marin MG (2010) The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: a first survey. Fish Shellfish Immunol 28:534–541

    Article  PubMed  CAS  Google Scholar 

  • Moravec F, Fredensborg BL, Latham ADM, Poulin R (2003) Larval Spirurida (Nematoda) from the crab Macrophthalmus hirtipes in New Zealand. Folia Parasitol 50:109–114

    PubMed  Google Scholar 

  • Perdomo-Morales R, Montero-Alejo V, Perera E, Pardo-Ruiz Z, Alonso-Jiménez E (2008) Hemocyanin-derived phenoloxidase activity in the spiny lobster Panulirus argus (Latreille, 1804). Biochim Biophys Acta 1780:652–658

    PubMed  CAS  Google Scholar 

  • Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80:183–191

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc Lond B 270:357–366

    Article  Google Scholar 

  • Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular war. Trends Ecol Evol 23:318–326

    Article  PubMed  Google Scholar 

  • Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240:532–539

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Söderhäll K (1983) β-1,3 glucan enhancement of protease activity in crayfish hemocyte lysate. Comp Biochem Physiol B 74:221–224

    Article  Google Scholar 

  • Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    Article  PubMed  Google Scholar 

  • Thomas F, Renaud F, de Meeûs T, Poulin R (1998) Manipulation of host behaviour by parasites: ecosystem engineering in the intertidal zone? Proc R Soc B 265:1091–1096

    Article  Google Scholar 

  • Thomas F, Poulin R, de Meeüs T, Guégan J-F, Renaud F (1999) Parasites and ecosystem engineering: what roles could they play? Oikos 84:167–171

    Article  Google Scholar 

  • Thomas F, Guldner E, Renaud F (2000) Differential parasite (Trematoda) encapsulation in Gammarus aequicauda (Amphipoda). J Parasitol 86:650–654

    PubMed  CAS  Google Scholar 

  • Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E (2009) Immunity mechanisms in crustaceans. Innate Immun 15:179–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the entire parasitology research group at the University of Otago; Karen Judge for providing equipment; Charlotte Seifert for assistance during field work and Jean-Baptiste Ferdy as well as Ning Liu for help with the programming in R. This project was funded by the Erasmus Mundus Program “European Master in Applied Ecology” (EMAE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Dittmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmer, J., Koehler, A.V., Richard, FJ. et al. Variation of parasite load and immune parameters in two species of New Zealand shore crabs. Parasitol Res 109, 759–767 (2011). https://doi.org/10.1007/s00436-011-2319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2319-2

Keywords

Navigation